
“Achieving Century Uptimes”
An Informational Series on Enterprise

Computing

As Seen in The Connection, A Connect Publication
December 2006 – Present

About the Authors:

Dr. Bill Highleyman, Paul J. Holenstein, and Dr. Bruce Holenstein, have a
combined experience of over 90 years in the implementation of fault-tolerant,
highly available computing systems. This experience ranges from the early days of
custom redundant systems to today’s fault-tolerant offerings from HP (NonStop)
and Stratus.

1

Gravic, Inc.
Shadowbase Products Group

 17 General Warren Blvd.
Malvern, PA 19355

610-647-6250
www.ShadowbaseSoftware.com

http://www.gravic.com/shadowbase

Achieving Century Uptimes
Part 16: Zero-Downtime Migrations for Active/Backup Configurations

May/June 2009

Dr. Bill Highleyman
Dr. Bruce Holenstein

Paul J. Holenstein

System or application upgrades are stressful! Even if you have a multi-hour or weekend
maintenance window to make and test the upgrade, you have a big-bang leap-of-faith that the
upgraded system will indeed come up. Thankfully, it does…and then it crashes! You must now
fall back to the original configuration. But will the fallback work? Will you lose any data during
this process?

With a technique known as Zero Downtime Migration, or ZDM, these risks can be avoided.
With ZDM, a new environment (operating system, platform, database, and/or application
version) is configured1 and brought up-to-date with the production environment that continues to
remain online and available to users! The new environment then can be tested for as long as
needed in parallel with the active production environment. Finally, the upgraded environment’s
database is synchronized with the operational database while the operational system continues
providing services. With proper testing, this means there will be no leap of faith that everything
will actually work when the cutover occurs.

In our previous article,2 we showed how ZDM was a natural capability of active/active systems
that comprise multiple nodes actively cooperating in a common application. But what if you are
not running active/active? Can you still enjoy the advantages of ZDM to eliminate planned
downtime for upgrades? The answer is “yes,” and in this article we show you how.

The Problem

Many systems today must be up 24 hours a day, 7 days a week. Continuous availability is needed
for applications such as online shopping, online banking, ATM, POS, patient monitoring, nuclear
system monitoring, telecommunications, global trading, and the list goes on. Even email
applications must be always up for global enterprises. Not only is continuous availability a
customer service issue, but in many cases it is also a regulatory requirement.

However, market forces dictate that these systems undergo major upgrades periodically to meet
changing user needs and to take full advantage of advancing technology for performance
improvement and cost reduction. If a periodic maintenance window is available, the upgrade
may be done in that window; but what happens if the upgrade fails? If no maintenance window is
available, and if the application simply cannot be taken out of service, what then?

1 Note that it is possible in certain cases to configure the new environment on the production system, in which case a
redundant system is not needed.
2 Part 15: Zero Downtime Migrations for Active/Active Systems, Connection; March/April, 2009.

2

With ZDM, you can sleep better at night since ZDM eliminates the need for planned downtime
and substantially mitigates the risk of cutover.

The Old Way

We call the current method of system upgrading the “Big-Bang” approach. The system is taken
down during the maintenance window, typically at night or during a weekend. If the upgrade will
impact the database – for instance, if the database schema is being modified – the first thing that
must be done is to make a full backup copy of the database (or an incremental copy of the
current database, saving all of the changes since the last full copy). The new environment is then
set up, and the database is reloaded if necessary into the new environment. The new system is
tested to the extent that it can be within the maintenance window.

When time is up, the new system must be put into service. If all goes well, the users are happy.
But all too often, things do not go well.

So what are the problems with the “Old Way”? First of all, the Big-Bang approach requires that
the system be taken down. Therefore, it cannot be used if continuous operation is a requirement.
Given that a maintenance window is available for the upgrade, what if the testing performed isn’t
sufficient to test all system aspects? What if the upgraded system has problems and cannot be put
into service? One must be able to fall back to the original system. But is this possible? If it is
possible, will the fallback fail?

It is the limited test time and the complex and difficult fallback requirement that makes the Big-
Bang approach so risky.

What is Needed?

In our previous article, we pointed out that three things are required to ensure smooth upgrades
with no planned downtime:

• Redundancy so that the new environment can be brought up without affecting the current
production environment.

• Fast failover so that system services can be switched from the current production system
to the upgraded system without impacting the users and can be switched back quickly to
the original production system if need be. In addition, it is usually very important not to
lose the new data added to the upgraded environment when a failback occurs.

• Reliable failover so that it is assured that the switchover to the new system and, if needed,
the fallback to the original system will work.

The New Way – ZDM

Using the technique of Zero Downtime Migration, applications can be available during the entire
upgrade process, including the switchover to the upgraded environment. Except for new features,
users will substantially be unaware of the switch to the new environment. Furthermore, should
the new environment experience problems either immediately after the switchover or at some

3

later time, users can be returned to the original production system with little if any interruption in
services and with no loss of data.

Active/Active ZDM – A Review

In our previous article, referenced above, we explained how active/active systems inherently
achieved the elimination of unplanned downtime with ZDM. An active/active system comprises
two or more nodes cooperating in a common application.

Users can be moved off of a node to be upgraded to one or more other nodes within seconds or
subseconds, thus satisfying the need for fast failover. Furthermore, it is known that the other
nodes are operational since they are already processing transactions, thus satisfying the
requirement for reliable failover.

By the same token, users can be quickly and reliably switched back to the upgraded node or
failed back if there are problems with the upgraded node.

Active/Backup ZDM

ZDM is not limited to active/active systems. Most highly-available systems today are not run in
an active/active mode. Rather, a backup system stands by to take over operations should the
primary system fail. The existence of a backup system satisfies the first requirement of
redundancy. However, what is needed is fast and reliable failover in order to eliminate planned
downtime. This is the role of ZDM.

Given that a redundant backup system does exist, the ZDM process proceeds as follows.

Step 1: Configure Environment to be Upgraded – Setup and configure the new environment
on a redundant system (usually the backup system, though in some cases the new
environment can be configured on the production system). The new environment will include
the appropriate hardware, operating system version, database management system version,
database schema, and application versions. It is a complete system ready for production.

Step 2: Load Test Database – Load a test database onto the system being upgraded. This
could be a special test database designed for system verification, a snapshot of the current
production database, the current production database or subset thereof acquired via an online
copy, or any other database that will allow the new system to be thoroughly tested.

Step 3: Test, Test, Test – Test the system as long as needed. This could take days, weeks, or
even longer. Thoroughly test not only the application logic but all interactions with ancillary
systems (which usually support verification transactions to ensure operability). Proper testing
must include testing at the full anticipated loads and beyond. During this extended test time,
the users continue to be serviced by the original production system.

Step 4: Synchronize the Database – When testing is complete, and when the upgraded
environment has been certified for use, the preparation for switchover is begun. The first step
is to synchronize the upgraded environment’s database with that of the production system.

4

This can be done with an online copy that will replicate the production database to the
upgraded system while the production system continues in operation. There are several
available products for accomplishing this. Alternatively, if the test database is a full copy of
the production database, the production system can queue changes made during the test
process and can drain these changes to the upgraded environment via data replication.

Step 5: Maintain Database Synchronization – When the current production database has been
loaded onto the upgraded environment, it is now important to keep it synchronized. This is
done by configuring a data-replication engine that will replicate all new updates made to the
production system to the upgraded environment so that the upgraded environment’s database
is always an up-to-date copy of the production database.

Step 6: Verify the Database – As an option, it is wise to use one of the available Verification
and Validation utilities to ensure that the upgraded database is indeed a viable copy of the
production database, especially if there has been a change in the database manager or
database schema.

Step 7: Configure Reverse Replication – To ensure that users can be failed back to the
production system if necessary, configure reverse replication so that changes made to the
database of the upgraded environment after users were cut over are replicated back to the
original production system.

Step 8: Switch Over Users – At this point, the upgraded environment is ready to be put into
production. Users can be switched over to the upgraded environment either en mass
(admittedly a big bang, but onto a thoroughly tested system) or, if the database and user
groups are logically partitioned, piecemeal by switching over one group of users at a time. If
the data-replication engine is synchronous, or if it is asynchronous and can handle data
collisions, users can be slowly moved over a few at a time to ensure proper operation.
Regardless, switching users over in a controlled fashion allows you to check scaling as the
load increases, hopefully avoiding any latent loading issues. When all users have been
switched over, the upgraded system is fully in production. However, it may be wise to keep
the old production system running with its database synchronized via the reverse replication
channel so that users can be switched back to it if necessary.

Step 9: Fall Back If Necessary – If problems should appear in the upgraded system either
during the cutover process or afterwards, users can be switched back to the original
production system while the problems in the upgraded environment are corrected. Just as
with cutover, fallback can be very fast and is reliable, with no data loss.

Step 10: Upgrade Original Production System - Once the upgraded system has been in
production long enough to inspire confidence, the original system can be decommissioned
and upgraded via the same ZDM process.

Thus, in terms of the requirements stated earlier, the switchover of users is fast because they are
being transferred from one operational system to another. Both failover and fallback are reliable
because the users are being switched back to a system that is known to be operating correctly.

5

A Case Study

A major Internet Service Provider (ISP) serves millions of users worldwide. At any one time,
several million of these users may be logged on. Continuity of service is mandatory.3

Login requests were being handled by a sixteen-server Linux/Sybase Login Request Complex
backed up by an additional sixteen servers. This complex had reached the limits of its capacity.
Expanding it would not only be very costly, but the sixteen independent databases created a
system-management nightmare. The ISP decided to move its Login Request Complex to a four-
processor, NonStop 16200 active/active system. It had to do this with minimal impact to its
customer base.

14-server
Linux

changes

changes

.....Sybase Data
Replication

16-server
Linux/Sybase

Partitioned
Database

16-server
Linux/Sybase

Partitioned
Database

active

backup

existing
login

requests

data repl.

data repl.

data repl. data replication

NonStop Active/Active
Login Request Complex

new login
requests

new login
requests

new login
requests

new login
requestsChange Capture

Complex

ETL

Linux/Sybase
Login Request Complex

Figure 1: ISP Login Request Complex Migration

The first step was to provide for the capture of Sybase database changes by setting up a fourteen-
processor Change Capture Complex using smaller Linux servers, as shown in Figure 1. As this
complex received and stored new login updates, the Login Request Complex database was
copied to the NonStop system via an ETL (extract, transform, and load) utility. Following the
initial load, the changes that had accumulated during the load as well as new changes were
replicated from the Change Capture Complex to the NonStop database, thus maintaining the
NonStop active/active system’s database in synchronism with the production login database. A
Verification and Validation utility was used to compare the production and active/active
databases to correct conversion errors.

At this point, the NonStop system was ready to be put into production. At first, only read
requests were routed to the NonStop system. Update requests were still routed to the
Linux/Sybase systems, with the changes being replicated to the NonStop system. After a period
of satisfactory performance, new users were assigned to the NonStop system, which handled

3 Major ISP Migrates from Sybase to NonStop with No Downtime, Availability Digest; November, 2008.

6

7

both read requests and update requests for these users. Finally, all user logon requests, both read
and update, were routed to the NonStop system.

The migration proceeded cautiously over a period of months. Several hundred million user
accounts were migrated to the NonStop system with no impact on user service. The new
NonStop active/active system not only provides a unified database of all user accounts, but it is
also easily expandable by adding nodes to the active/active system.

Summary

System upgrades without any planned downtime and with reduced business risk are being
performed today via ZDM. By using data replication to keep the production and upgraded
databases in synchronism, users can be switched between the two systems rapidly and reliably,
eliminating the significant risk in the Big-Bang approach to system upgrades.

	The Problem
	The Old Way
	What is Needed?
	The New Way – ZDM
	Active/Active ZDM – A Review
	Active/Backup ZDM

	A Case Study
	Summary

