
“Achieving Century Uptimes”
An Informational Series on Enterprise

Computing

As Seen in The Connection, A Connect Publication
December 2006 – Present

About the Authors:

Dr. Bill Highleyman, Paul J. Holenstein, and Dr. Bruce Holenstein, have a
combined experience of over 90 years in the implementation of fault-tolerant,
highly available computing systems. This experience ranges from the early days of
custom redundant systems to today’s fault-tolerant offerings from HP (NonStop)
and Stratus.

1

Gravic, Inc.
Shadowbase Products Group

 17 General Warren Blvd.
Malvern, PA 19355

610-647-6250
www.ShadowbaseSoftware.com

http://www.gravic.com/shadowbase

Achieving Century Uptimes
Part 13: Synchronous Replication: Pros, Cons, and Myths

November/December 2008

Dr. Bill Highleyman
Dr. Bruce Holenstein

Paul J. Holenstein

The databases in an active/active system must be kept synchronized so that a transaction has
the same view of the application state independent of the node at which it is being executed. In
today’s active/active systems, database synchronization typically is accomplished by replicating
database updates to all database copies in the active/active network so that these copies are
updated simultaneously or nearly simultaneously.

There are two primary methods for data replication – asynchronous replication and
synchronous replication. We have discussed asynchronous replication in earlier articles.1 In this
article, we discuss the principles of synchronous replication. We start with a brief review of
asynchronous replication so that we can compare the two. We then point out the advantages,
disadvantages, and a myriad of contemporary misunderstandings regarding synchronous
replication.

Asynchronous Replication – A Review

Asynchronous replication typically uses a replication engine at each database copy. Each
replication engine monitors changes to its database and sends those changes to be applied to the
other database copies in the application network. The replication engine receives changes to its
database via a Change Queue that is fed database changes by the transaction monitor, the
application, database triggers, or other means.

A major advantage of asynchronous replication engines is that the application is unaware of
the replication activity (except for whatever additional load is placed on its resources).
Replication is “under the covers.” Therefore, there is little if any performance impact on the
applications.

Recovery from faults is also straightforward. If a node fails, the replication engines that are
feeding updates to the failed node simply hold their updates in their Change Queues. When the
failed node is returned to service, these Change Queues are drained to bring the failed node’s
database up-to-date.

However, there is a fundamental characteristic of asynchronous replication that leads to
certain problems. There is a delay from the time that a change is made to a database to the time

1 Achieving Century Uptimes - Part 1: Survivable Systems for Enterprise Computing, Connection; November/December, 2006.

2

that it is applied to the remote databases as the change propagates through the source’s Change
Queue, the replication engine, the communication network, and the target-side applier. The delay
is called replication latency. In modern asynchronous replication engines, this delay is generally
measured in the order of tens or hundreds of milliseconds plus the communication latency.

One problem that replication latency creates is loss of data following a node failure. Should a

node in the active/active network fail, any data that is in the replication pipeline will be lost since
it has not made it to the remote nodes. It is possible that certain database updates will make it to
some nodes but not others, thus leaving the database copies in an inconsistent state – a situation
that can be resolved with post-mortem validation and verification utilities.

Another problem is that of data collisions. If nearly-simultaneous transactions at two

different nodes update the same data object in their local databases, they will be unaware of the
remote update being made. Each node will replicate its change to the other node, and the
replicated changes will overwrite the original changes. Now each database copy is different, and
both are wrong. Data collisions can be avoided via certain architectures.2 Alternatively, they can
be detected and corrected via business rules.3

Synchronous Replication

Synchronous replication ensures that either an update is made to all nodes in the application

network, or that it is made to none of the nodes. Though there are several ways to implement
synchronous replication, in effect, the synchronous replication facility obtains locks on all copies
of a data object to be modified. It either updates the data object copies as soon as it obtains the
locks or it holds the updates for a commit instruction from the source system. Upon receiving the
commit, it performs the updates if it has not previously done so and then releases the locks.

Data Loss and Data Collisions

Synchronous replication avoids the problems of data loss and data collisions suffered by

asynchronous replication. If a node fails, the surviving database copies are left consistent with
each other. There is no data that has been applied to one node (including the originating node)
that has not been applied to all nodes. Thus, the data loss problem that can occur with
asynchronous replication is precluded with synchronous replication.

Likewise, data collisions cannot occur. Since a node that is updating a data object must

acquire locks on all copies of that data object before it can update it, the node cannot update an
object that is currently being updated by another node.

2
 Achieving Century Uptimes - Part 3: Avoiding Data Collisions, Connection; March/April, 2007.

3
 Achieving Century Uptimes - Part 4: Resolving Data Collisions, Connection; May/June, 2007.

3

Replication Granularity

Synchronous replication can generally occur at two levels – network transactions or

coordinated commits.4

With network transactions (also referred to as dual writes), each operation (insert, update,

delete) stands on its own. The synchronous replication facility first acquires locks on all copies
of the data object to be modified. It then updates all data object copies and releases the locks.
Typically, the next operation is not started until the previous operation has been completed (or at
least safe-stored) and acknowledged by all nodes. Thus, the updating node must wait for all
nodes to acknowledge an operation before it can proceed to the next operation.

Using coordinated commits, the individual operations making up the transaction are sent

asynchronously to all nodes. As with asynchronous replication, the updating node is not delayed
as operations are replicated. Each node must obtain a lock on each data object for which an
operation has been replicated and must wait for a transaction commit command from the
originating node.

When the originating node has sent all of the operations that are within the scope of the

transaction, it sends a query to each of the remote nodes asking each node if it is ready to commit
the transaction. If the remote node has acquired locks on all of the data objects to be updated
(and perhaps has already performed the updates), it responds positively. Otherwise, it returns a
negative response. If the originating node receives positive responses from all of the remote
nodes, it sends a commit command; and the transaction is committed across the application
network. Otherwise, it directs each remote node to abort the transaction. Thus, the transaction is
either applied to all nodes in the application network or to none of them.

Application Latency

Though synchronous replication solves the problems of data collisions and data loss

following a node failure, it suffers from its own issue. Since the application has to wait for an
operation or a transaction to be executed at all nodes before it can continue, the application is
delayed. This results in an extended response time. The delay imposed on application response
time by synchronous replication is known as application latency.

Under network transactions, an update operation must typically wait for two communication

round trips – one to read the current contents of the row and a second to send the update and
receive the completion response. If a transaction contains four updates, up to ten communication
round trips may be required – two for each update and two for the two-phase commit.
Communication round-trip time is typically about 2 milliseconds per 100 miles.

With coordinated commits, the application is delayed only by a replication latency interval

while the ready-to-commit query is sent to the remote nodes.

4 W. H. Highleyman, P. J. Holenstein, B. D. Holenstein, Chapter 4, Synchronous Replication, Breaking the
Availability Barrier Volume I: Survivable Systems for Enterprise Computing, AuthorHouse; 2004.

4

If the distances between nodes is short and transactions are small, network transactions may
yield a lower application latency time. Otherwise, coordinated commits should be preferable.
Furthermore, coordinated commits will make more efficient use of the network since many
updates can be carried in a single large communication block. Network transactions require the
transmission of many small messages across the network – one per operation.

Disaster Tolerance

The severe application latency that can be caused by network transactions due to

communication delays limits the distance by which nodes may be separated. Typical separation
limits are tens of miles to hundreds of miles, depending upon the application’s tolerance to
application latency.5 Systems using network transactions typically are configured over campus
clusters using fibre-channel links. Therefore, the tolerance to disasters using this technique is not
very great.

On the other hand, coordinated commits are less sensitive to distance since application

latency with this method is primarily a function of the replication latency of the replication
engine (which includes just one communication channel round-trip time). Therefore, it is suitable
for extended distances that can be measured in the thousands of miles.

Throughput

Though application latency extends the response time of an application, it is important to

note that the throughput of a node is not reduced. It simply means that more processes must be
configured to run in parallel to handle the transaction load.

Node Failure

One common misunderstanding with respect to synchronous replication has to do with

availability. An argument is sometimes made that synchronous replication reduces availability
drastically because once a node fails, no operations or transactions can be completed; and the
system fails. However, synchronous replication engines do not fail the system when a node fails.
Rather, the failed node is removed from the scope of the operation or transaction; and
synchronous replication continues with the surviving nodes.

Recovery

While a node is down, replication to the failed node reverts to asynchronous replication. That

means that each operational node will queue its changes in a Change Queue. When the failed
node is returned to service, the Change Queues are drained to the recovered system to
synchronize its database. When all queues have been drained (including new updates that have
occurred during the resynchronization process), the recovered node can return to synchronous
replication. Therefore, recovery is quite similar to that used by asynchronous replication.

5 OpenVMS active/active split-site clusters use network transactions. Though HP supports separations up to 500 miles, tests on typical

applications show a 3:1 degradation in performance over this distance. See OpenVMS Active/Active Split-Site Clusters, Availability Digest; June
2008.

5

This recovery process is not simple and is generally unsuitable for manual operation. It
should be ensured that this is a capability of the synchronous replication engine and that recovery
is transparent to the operations staff.

An alternate recovery method is to resynchronize the database of the failed node via an

online copy utility. However, this will typically take much longer since the entire database needs
to be copied or at least verified to find the rows that differ and to bring them into currency.

Network Loss

If one or more nodes become isolated due to a network fault, the problem is the same as it is

with asynchronous replication. Operations staff have two options. One is to disable the isolated
nodes and to continue operation with a reduced system. The other is to allow the two sets of
nodes to continue independently in split-brain mode. During this time, there are bound to be data
collisions. Once the network is restored, the data collisions must then be identified and resolved.

Neither of these cases may be acceptable for an application. Good system design will ensure

that the network is redundant and highly available so that the network will never go down – well,
hardly ever.

Availability

From the above descriptions of node failure, node recovery, and network loss, it is clear that

systems using synchronous replication have the same availability profile as those using
asynchronous replication. In either case, a node failure is tolerated; and the system continues in
operation with the surviving nodes. Restoring a node to the application network means primarily
that its database must be resynchronized before it can be put into service.

node 1

node 2

system

node
failure

system
failure

6

7

As shown in Figure 1, the active/active system fails only if more than the configured number
of spare nodes fails (for instance, in a singly-spared system, a dual node failure is required to
bring the application down).

Summary

Synchronous replication solves the asynchronous-replication problems of data collisions and

data loss following a node failure. However, it is subject to application latency that will extend
transaction response time, though server throughput is unaffected.

There are two types of synchronous replication – the replication of individual operations or

the replication of transactions. Due to application latency, network transactions impose a
distance limitation on how far the processing nodes may be separated, thus leading to perhaps
insufficient disaster tolerance. Coordinated commits may be slower over short distances and
small transactions but are faster over long distances and do not limit the distance that nodes may
be separated.

Other than these factors, the characteristics of synchronous replication are much the same as

those of asynchronous replication. The two methods both require redundant reliable networks,
and both have the same availability profile.

A potential problem with synchronous replication is the application latency that it causes.

However, by using an efficient coordinated commit engine, application latency may not be a
factor for most business applications. For instance, using a coordinated commit engine with a 50
millisecond replication latency and nodes separated by 500 miles (10 milliseconds
communication latency), the application latency introduced by synchronous replication will be
about 60 milliseconds.

Gravic, Inc. Shadowbase Products Group

301 Lindenwood Drive, Suite 100
Malvern, PA 19355 610-647-6250

http://www.gravic.com/shadowbase

	Asynchronous Replication – A Review
	Synchronous Replication
	Data Loss and Data Collisions
	Replication Granularity
	Application Latency
	Disaster Tolerance
	Throughput
	Node Failure
	Recovery
	Network Loss
	Availability

	Summary

