
“Achieving Century Uptimes”
An Informational Series on Enterprise

Computing

As Seen in The Connection, A Connect Publication
December 2006 – Present

About the Authors:

Dr. Bill Highleyman, Paul J. Holenstein, and Dr. Bruce Holenstein, have a
combined experience of over 90 years in the implementation of fault-tolerant,
highly available computing systems. This experience ranges from the early
days of custom redundant systems to today’s fault-tolerant offerings from HP
(NonStop) and Stratus.

1

Gravic, Inc.
Shadowbase Products Group

 17 General Warren Blvd.
Malvern, PA 19355

610-647-6250
www.ShadowbaseSoftware.com

http://www.gravic.com/shadowbase

Achieving Century Uptimes
Part 22: Fast Failover with Active/Active Systems (1 of 2)

May/June 2010

Dr. Bill Highleyman
Paul J. Holenstein

Dr. Bruce D. Holenstein

Continuous availability means that we will never be down. But systems fail. Networks fail.

So how can we achieve continuous availability? The secret is to let it fail, but fix it fast. If user
services are restored following a failure so quickly that no one notices, in effect no failure has
occurred. Continuous availability has been achieved.

We relax this criterion a bit by replacing the phrase “no one notices” with the phrase “no one

is inconvenienced.” Typically, this means recovery times in the order of a few seconds. If normal
transaction response time is two seconds, and if we can recover in one second, we have achieved
this goal. A system failure has no worse impact on users than a busy system, and users will
probably not perceive the failure as downtime.

Active/Active Networks

Active/active networks1 allow us to achieve the goal

of continuous availability. As shown in Figure 1, an
active/active network comprises multiple
geographically-distributed processing nodes using
geographically-distributed consistent copies of the
application database. Data replication keeps the database
copies in synchronism.

The key to fast recovery is that users can direct their

transactions to any processing node in the application
network. Therefore, should there be a node failure or a
network failure, all that users need to do is to redirect
their traffic from the affected node to a surviving node
in the network. If users can accomplish redirection in
subseconds or seconds, they have achieved continuous
availability.

But how can user traffic be rerouted so quickly? The answer to this question is the purpose of

this article series.

Fault Recovery

In general, the recovery from a fault requires the following steps:

1 Achieving Century Uptimes Part 1: Survivable Systems for Enterprise Computing, The Connection; November/December 2006.

Figure 1: An Active/Active Network

network
database

synchronization

users

users

node A

node B

data
base

copy 1

data
base

copy 2

node Cnode D

2

• Detect that a fault has occurred.
• Determine the cause of the fault.
• Decide the course of action. Is it better to try to recover the failed system or to fail

over to a backup system?
• Approve the course of action (management approval is often required).
• Invoke the recovery action:

o If recovery: o If failover:
- Start the applications. - Rebuild the database
- Test the system. - Start the applications
- Restore system to service - Reconfigure the network.

 - Test the system.
 - Restore the system to service

For these reasons, failover can often take many hours if a company is using an active/backup

configuration for disaster recovery.

If the fault is in an active/active network, the operations staff can bypass most of this lengthy

procedure. Of course, the system must first detect the fault. Given that, the course of action is
simple – reroute traffic to surviving nodes. There is no need for a lengthy decision process or for
management approval – just do it! After all, the application is up and running on the other nodes
and it is in a known-working state. And if the system can reroute traffic automatically with no
manual intervention required, continuous availability can be achieved.

User Redirection

There are three basic ways that user traffic can be redirected to surviving nodes:

• Client redirection.
• Network redirection.
• Server redirection.

In this article, we discuss client redirection and network redirection. A follow-up article will

focus on server redirection. We will find that as the redirection intelligence moves from the
client to the network to the server, redirection becomes more complex and, in some cases,
slower. However, it is not always possible to add redirection intelligence to clients (such as
ATMs and browsers). Therefore, we must be aware of a range of redirection options.

Client Redirection

Client redirection is perhaps the least complex and fastest way to redirect user traffic.

However, it depends upon the client being intelligent enough to know that it has a primary node
and a backup node and that it understands how to switch between them. This may not always be
possible. For instance, standard browsers and ATMs are examples of clients that may not lend
themselves to adding such intelligence.

3

Given the appropriate intelligence, a client will have knowledge of the nodes available to it
based on their IP addresses or URLs. In Figure 2, a client is shown as having access to two
processing nodes. It sends transactions to its primary node via IP address IP1. If it needs to do so,
it can reroute its transactions to its backup node, which is listening on IP address IP2.

The client normally sends its transactions to its primary node (IP1 - Figure 2a). However,
should it not receive a response from this node (Figure 2b), it resends the failed transaction and
all further transactions to its backup node (IP2 - Figure 2c). While the client is using the backup
node, it periodically sends test transactions to its primary node to determine when that node is
back in service. When the client begins to receive responses to its test messages, it can switch
back to its primary node and resume sending transactions to it.

Figure 2: Client Redirection

In this way, failover takes the same amount of time that any resubmission of an aborted

transaction would take. Failover time is primarily the transaction timeout. Furthermore, the user
is unaware of the restoration of the failed node. Restoration simply entails the submission of the
next transaction to the restored primary node instead of to the backup node.

The client can retry a transaction a specified number of times before failing over, or it can do

so on the first transaction failure. If the failure is transient in nature, the client can quickly
determine this condition and can switch back to its primary node.

If the active/active network comprises multiple nodes, the client can be given an ordered list

of nodes to which it can fail over. In this way, multiple node failures are easily handled
providing the surviving nodes can handle the increased transaction load.

An alternate strategy is for the client to round-robin its transactions to each node, one node

after the other. If a node fails to respond, the client removes it from the round-robin list and
instead sends the nonresponsive node periodic test transactions. When the node once again
becomes responsive, the client returns it to the round-robin list.

The client should also be able to respond to an external command to change its current

processing node and perhaps its failover list. This capability allows all clients to move from a
node that is about to be taken down for maintenance. It also allows the operations staff to easily
redistribute workload to accommodate short-term peaks or long-term trends.

4

Network Redirection

With network redirection, the responsibility for redirecting traffic from a failed node is the

responsibility of the network. Figure 3a shows a typical configuration for an active/active
network. It comprises two nodes, Node A and Node B, which are geographically separated. A
replication engine keeps the nodal databases in synchronism by sending changes made to each
database to the other database over a replication communication link.

In this example configuration, each node services its own community of users accessing the

node over a local LAN. However, rather than being directly connected, the LAN traffic flows
through a router that normally routes all traffic to the local node. As we shall see, it is the router
that allows the network to redirect traffic.

The clients are not aware, nor do they care, to which node they are connected. They are only

aware of a virtual IP address assigned to them for the submission of transactions. Clients at Node
A are assigned virtual address IP0a, and clients at Node B are assigned virtual address IP0b.
Router 1 normally routes all client traffic originating from IP address IP0a to Node A’s physical
IP address, which is IP1. Likewise, Router 2 normally routes all IP0b traffic to Node B at IP
address IP2.

In order for network redirection to work in this configuration, the routers must have the

intelligence to be able to route around an outage – a capability inherent in most routers today.
These routers maintain routing tables that designate alternate routes to use if a primary route
fails. In the example of Figure 3, a communication link connecting Routers 1 and 2 provides the
alternate route for each router.

Figure 3b illustrates the traffic flow should Node A fail. Router 1 discovers that it can no

longer send traffic to Node A. Consulting its routing table, it determines that the alternate route is
the routing communication link to Router 2. It therefore begins sending further traffic for the
IP0a clients to Router 2, which will forward that traffic to Node B. Node B is now responding to

Figure 3: Network Redirection

replication

IP1

Node A

IP2

Node B

IP0a IP0b

alternate routing
Router 2Router 1

replication

IP1

Node A

IP2

Node B

IP0bIP0a

alternate routing
Router 2Router 1

a) Normal Operation b) Failover

5

all transactions from the entire user community. The router has accomplished failover in the time
that it takes it to determine that one of its links is down.

When Node A is ready to be returned to service, a command must be sent to Router 1,

directing it to once again route IP0a traffic to Node A.

Not shown in Figure 3 is the network redundancy that should exist for truly continuous

availability. Every path in the network should be redundant to ensure that the network can
reroute traffic around any network fault. Network redundancy includes duplexed replication and
alternate routing links, duplexed routers, duplexed LANs, and duplexed nodal LAN interfaces.
Of course, in actual practice, a company may decide that it is willing to accept the unlikely
failure of a highly-reliable component in order to save costs or to avoid technical complexities.
For instance, a single LAN may be used at each site if the clients are incapable of dual-LAN
operation.

Connection and Session Loss

A common problem with any strategy for user redirection, whether redirection is the

responsibility of the client, the network, or the server (server redirection is discussed in our next
article), is that the node to which the user traffic is being redirected knows nothing about the
original session that the client had established with its server. The client loses both its session
with the application and its connection to the server node that it had been using.

If no other provision is made, the network will notify the user of the connection and session

losses, and the user will have to reestablish them. If this is the case, continuous availability has
been compromised because the manual reestablishment time has “inconvenienced” the user.
However, if the client has the intelligence to automatically detect this condition and can
automatically reestablish the connection and session, or if it can maintain dual sessions with its
primary and backup nodes, then the user will be unaware of the problem (except perhaps for a
short time delay if automatic connection/session reestablishment is needed). In this case,
continuous availability has been achieved.

Nodal Capacity

This article has inherently assumed that the processing nodes and routers in an

active/active network have been sized to properly handle the increased load in the event of a
node or router failure (or multiple failures, if so desired). Otherwise, a node or router failure can
overload other nodes or routers, taking them down and causing a cascade of failures that takes
down the entire network. The press is rife with stories of just this happening.2

What’s Next?

Fast and reliable recovery from a node or network failure in an active/active network is
conceptually simple. All that has to be done is to redirect traffic generated by affected users to
surviving nodes in the network. Failover is reliable since it is known that the surviving nodes are

2 Google Troubles – A Case Study in Cloud Computing, Availability Digest; October 2009.

6

7

fully operational. After all, they are currently handling transactions for the same applications
being used by the affected users. Failover can also be fast – subseconds to seconds – so fast that
users may not even notice that there has been an outage. However, the devil is in the details.

 We have discussed in this article how to rapidly recover from a node failure in an

active/active network using client redirection and network redirection. Failover using these
techniques can be automatic and very rapid. Transaction timeouts for client redirection and
router timeouts for network redirection are the determinants of failover times. Note that these
techniques do not affect the applications. They are implemented in the active/active
infrastructure itself.

In our next article, we look at user redirection under the control of the processing nodes in

the network, what we call server redirection. Though in common use, we will see that server
redirection can be more complex and may take longer, even involving some manual intervention
in some cases.

One problem not addressed here that will be discussed in our next article is the loss of the

replication network. In this case, unless something is done, each node will continue to process
transactions independently; and the database copies will begin to diverge. If this is unacceptable,
provisions must be in place to take one of the nodes offline until replication can be restored. It is
for this reason that the replication network should be redundant with automatic failover.

	Active/Active Networks
	Fault Recovery
	User Redirection
	Client Redirection
	Network Redirection
	Connection and Session Loss
	Nodal Capacity
	What’s Next?

