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Availability (Part 5) – The Ultimate Architecture 

Dr. Bill Highleyman 
Paul J. Holenstein 

Dr. Bruce D. Holenstein 

In this the fifth part of the Availability series, we apply the concepts that we have 
generated in our previous four parts to suggest an ultimate architecture that can extend 
the four 9s availability of today’s systems to six, seven, or even eight 9s at little 
additional cost. 

In Parts 1 through 41, we looked at several aspects of system availability: 

• We analyzed the availability of a system in terms of the reliability of its
component subsystems and its failure modes.

• We pointed out the reliability advantages that can be gained by splitting a
system into several smaller cooperating but independent systems.

• We explored various methods for keeping these independent systems
synchronized with each other.

• We considered the implications of system outages due to software failures
or human errors that are corrected by recovery rather than repair.

Before we look at ultra-high availability architectures, let us review what we have 
learned so far. 

An Availability Review 

In Part 1 of this series, we analyzed the availability of redundant systems 
comprising a number of identical subsystems. Should enough subsystems fail so that an 
outage occurs, the system is restored to service as soon as the requisite number of 
subsystems are repaired. We found that the system availability A could be expressed as 

MTBFA 1 F
MTBF MTR

= = −
+

 (1a) 

where 

1 Highleyman, W. “Availability Part 1 – The 9s Game,” The Connection, Volume 23, No. 6; 
November/December, 2002. 
  Highleyman, W., Holenstein, B. “Availability Part 2 – System Splitting,” The Connection, Volume 24, 
No. 1; January/February, 2003. 
  Highleyman, W., Holenstein, P., “Availability Part 3 – Synchronous Replication”, The Connection, 
Volume 24, No. 2; March/April, 2003. 
  Highleyman, W., Holenstein, B. “Availability Part 4 – The Facts of Life,” The Connection, Volume 24, 
No. 3; May/June, 2003. 
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and where 

A is the system availability. 
F is the system probability of failure. 
MTBF is the system mean time before failure. 
MTR is the system mean time to restore (repair plus recovery). 
s is the number of spare subsystems provided. 
f is the number of failure modes, or the number of ways in which s+1 subsystems 

can fail such that a system outage is caused. 
a is the subsystem availability. 
mtbf is the subsystem mean time before failure. 
mtr is the subsystem mean time to repair. 

For systems configured with a single spare (NonStop systems), if any failure of 
two subsystems can cause a system outage, then the number of failure modes is 

n(n 1)f
2
−

= (1c) 

where 
n is the number of processors in the system. 

We also showed that 

mtrMTR
s 1

=
+

(2) 

smtbf mtbfMTBF
f(s 1) mtr

 ≈  +  
(3) 

We pointed out that the number of failure modes in a NonStop system was very 
sensitive to the allocation of processes to processors, and poor allocation could reduce 
system reliability by more than an order of magnitude. 

In Part 2, we looked at the dramatic improvements in availability obtained by 
replicating systems - an approach that is, however, very expensive. We extended the 
replication concept to the more economical approach of splitting a system into k smaller 
independent but cooperating systems. We found that such a network of systems is at least 
k times more reliable than a single system. Moreover, we found that in the event of a 
system outage, only 1/k of the total processing capacity is lost rather than all of it. 
Furthermore, the chance of losing more than 1/k of the system capacity is almost never. 

Of course, these k independent systems must keep their data bases synchronized. 
In Part 3, we looked at techniques for doing this and evaluated the transaction 
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performance of two key methods for providing exact database synchronization. These 
two methods are dual writes within a single transaction (network TMF) and coordinated 
commits. The latter method involves starting independent transactions on each system, 
replicating data updates asynchronously, and then coordinating the commits at each 
system. 
 
 The systems studied up to this point were repairable systems. That is, in the event 
of an outage caused by s+1 subsystem failures, the repair of one failed subsystem allowed 
the system to be returned to service. In Part 4, we considered what is really the case with 
today’s NonStop systems – most system outages are caused by software faults or human 
errors. As a consequence, a system usually does not have to be repaired following an 
outage; it has to be recovered. We also considered the impact of failover faults on system 
availability. We quantitatively demonstrated the importance of short recovery times in 
minimizing the impact of failover faults and for improving system availability in general. 
 
 In this our final part, we put together the concepts of our first four parts to suggest 
an ultimate architecture that can potentially increase system reliability by several orders 
of magnitude at perhaps little additional cost. We start with a standard single NonStop 
system as a base line. We then consider a variety of high availability options leading us to 
the suggested ultimate architecture. As we progress, we will move from today’s 
infrastructure into that which we hope will be available tomorrow. 
 
The Strawman System 
 
 We start with a single 7x24 NonStop system that we will re-architect to improve 
its availability (Figure 1). This system has the following parameters: 
 
 Number of processors   16 
 Mean time before failure  5 years 
 Mean time to restore (recovery) 4 hours 
 Availability    (5 years) / (5 years + 4 hours) = .9999 
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Strawman Single System 

Figure 1 
 
Note that the five-year MTBF assumption includes outages from all causes, including 
operational errors, hardware failures, software faults, application bugs, and 
environmental problems. 
 
Splitting Into Independent Systems 
 
 Our first attempt at improving availability is to replace the single system of Figure 
1 with a network of smaller systems, each being fully independent and in total providing 
the same capacity as the single system. For purposes of illustration, we will split the 16-
processor strawman system of Figure 1 into four 4-processor systems (Figure 2), each 
with a mirrored copy of the full data base. 

 
Split System 

Figure 2 
 
 We assume that users at any system can update any data item in the data base 
(after all, that is what they could do in the strawman system). An update made at one 
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system must then be propagated to the other systems in the network via some means such 
as data replication. This is what we have called an active/active application. 
 
 We have shown in Part 2 that splitting a system into k nodes reduces its 
probability of failure (i.e., increases its reliability) by a factor of 
 

   n 1k k
n k
−

>
−

      (4) 

where 
 

n is the number of processors in the original single system. 
k is the number of nodes into which the original system is split. 

 
Note that this factor is always greater than k. Splitting a system into k nodes increases its 
reliability by at least k. 
 
 Let us define an outage as the loss of just one of the k nodes. Thus, if the system 
has failed, we have lost just 1/k of its capacity, not 100% as we would with a single 
system. 
 
 In the case shown in Figure 2, we have split the single system into four nodes 
(k=4). Therefore, from Expression (4), this split system will be five times more reliable 
than the single system and gives an availability of .99998 rather than .9999. This means 
that the system MTBF has increased from 5 years to 25 years. As an added plus, when it 
does fail, it still provides 75% of its capacity (the single system will provide no capacity). 
 
 Even more striking is its tenaciousness to provide at least 75% capacity. Note that 
it will take the failure of two nodes to reduce the system capacity to less than 75%. There 
are six ways that the four-node system of Figure 2 can lose two nodes. Therefore, from 
Equations (1b) and (1c), the probability of a two-node failure, F, is 6(1-.99998)2 which is 
more than nine 9s. From Equation (1a), we also note that  
 

   MTRMTBF
F

≈  

 
Using our MTR assumption of four hours, the average time before losing 75% capacity 
(i.e., a two-node failure) is over 1,900 centuries! 
 
 Another advantage of this architecture is that the application survives even if the 
network fails, though it continues with disconnected independent nodes. 
 
 However, this architecture comes with one big problem – data collisions. There is 
nothing to prevent two users at two different systems from updating the same data item at 
the same time, thus putting the data base in an inconsistent state. The detection of data 
collisions can impose significant overhead on the system. Even worse, the resolution of 
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data collisions often is a manual process. In fact, some applications such as security 
trading systems cannot tolerate the resolution of data collisions after the fact. 
 
 In Part 3 we showed that even in reasonably sized systems, collision rates could 
easily exceed 1,000 collisions per hour. If they must be resolved manually, this situation 
is clearly untenable. 
 
 One solution to avoid collisions is to use synchronous replication, as described in 
Part 3. However, the complexity of the transaction grows as more nodes are added to 
handle additional traffic. For eight nodes, each transaction would have to make 8 times 
the number of updates associated with each transaction. This would certainly be 
undesirable using dual writes (i.e., all updates are done under a single transaction). Large 
numbers of updates in a transaction clearly call for coordinated commits using 
asynchronous data replication, as pointed out in Part 3. However, even in this case, the 
network traffic grows as k2 (each new node adds another batch of transactions, and each 
transaction is now longer). Therefore, the system is not scalable. 
 

Another problem with such an architecture is cost. Splitting processors among the 
nodes is cost-efficient. However, reproducing the data base at each node can be 
extremely costly, since in many large single systems the data base represents 70% to 90% 
of the system cost. 
 
 No wonder, as Jim Gray2 points out, we don’t see large active/active applications 
being deployed today. 
 
System Splitting with Dual Data Bases 
 
 As pointed out above, the architecture shown in Figure 2 has three severe 
problems: data collisions, scalability, and cost. 
 

All of these shortcomings can be substantially improved by recognizing that the 
mirrored data base does not have to be replicated across all systems. It is sufficient to 
have only two mirrored copies of the data base in the network so that the database will 
still be accessible in the event of a node failure. Figure 3 shows a configuration in which 
the data base is split into k partitions a, b, c, and d (four in our case), and each partition 
has one mirror a’, b’, c’, and d’ on another node. 

 
 Now we need only to pay for two data bases, regardless of the size of the network. 
Furthermore, since each update need only be made to two copies of the data base, 
network traffic grows only as the transaction rate grows; and the system is scalable. 
 
 Synchronous replication now becomes a real option to keep the data bases 
synchronized to avoid data collisions. The number of database actions required has only 

                                                 
2 Gray, J. et al, “The Dangers of Replication and a Solution,” ACM SIGMOD Record (Proceedings of the 
1996 ACM SIGMOD International Conference on Management of Data), Volume 25, Issue 2; June, 1996. 
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doubled regardless of the number of nodes (in our previous discussion, it had been 
proportional to the number of nodes), and the network traffic increases proportionally to 
the transaction rate rather than to the square of the number of nodes. This is a scalable 
solution.  
 
 

 
Split System, Dual Mirrors 

Figure 3 
 
 So far as the method for synchronous replication is concerned, we showed in Part 
3 that dual writes to both partitions as part of a common transaction (network TMF) is 
applicable to co-located nodes such as campus configurations. Coordinated commits 
using data replication is appropriate for wide-area configurations. This is discussed 
further below. 
 
Do We Need to Replicate a Mirrored Data Base? 
 
 A mirrored data base is already redundant. Why do we need two of them? After 
all, we were satisfied with a single mirrored pair in our strawman 16-processor system. 
 
 More specifically, a typical single disk today has a mean time before failure of 
about 500,000 hours. Let us derate this to 100,000 hours to account for environmental 
and other degrading factors. Furthermore, let us assume a leisurely 24-hour repair time. 
The mirrored disk system has one spare (s=1) and one failure mode, which is the failure 
of both disks (f=1). From Equation (3), the MTBF of a mirrored disk pair is nearly 500 
centuries! Its availability is over eight 9s. 
 
 Our single NonStop system was assumed to have an MTBF of five years. Our 
split system is five times more reliable and therefore has an MTBF of 25 years. The 
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mirrored disk pair is orders of magnitude more reliable. Therefore, the system only needs 
a single mirrored data base. 
 
 However, we would not want to simply connect our mirrored pair to one of the 
nodes because the failure of that particular node would take down the entire system. We 
have other options as follows. 
 

Option 1: Split Mirrors 
 
 We can split our disk mirror between two nodes as shown in Figure 4a. Now the 
failure of any one node does not take down the system. Such a failure’s only impact is to 
lose 1/k of the system capacity (25% every 25 years on the average, in this case). Losing 
another chunk of 1/k capacity or, even worse, both database nodes, will happen almost 
never. We have all of the advantages of system splitting (almost five 9s availability) at 
virtually no extra cost (the same number of processors and disks as the single system) and 
with a very small performance penalty due to the requirement for synchronous 
replication. 
 

 
 

Split Mirrors  
Figure 4a 

 
Option 2: Network Storage 

 
 Alternatively, the split mirrors of Figure 4a could be made to be independent of 
any processor as shown in Figure 4b. This is the promise of network storage. The disk 
subsystem would connect independently to the network rather than to a processing node. 

 
 There are several advantages to this configuration. The loss of any one node in the 
network will not cause the loss of both a processing node and a database node. 
Furthermore, the system will survive multiple failures of processing nodes, albeit with 
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reduced capacity. Finally, a processing node can be taken down for maintenance or 
update without compromising the availability of the data base.  
 

However, the failure of both database halves would cause a system failure, though 
we have argued that the probability of this happening is orders of magnitude less likely 
than the loss of a processing node. Of course, this does not consider a disaster that takes 
out the database system nor the network connecting them. If disaster tolerance is a 
requirement, then the architecture of Figure 4a is appropriate, using data replication with 
coordinated commits to keep the data base in synchronism. 

 
If, at some time in the future, geographically distributed network storage should 

become available, then even this configuration could provide disaster tolerance. 
Geographically distributed network storage must await distributed disk managers with 
distributed lock management. 
 

 
Mirrored Network Storage 

Figure 4b 
 
The Ultimate Architecture 
 
 The configurations described for single mirriors work for small disk farms. Our 
examples have been based on a data base comprising a single pair of mirrored disks. 
 
 But what about large disk farms? A disk system with d mirrored pairs will have 
an MTBF of 500/d centuries since there are d ways in which it can fail. A large disk farm 
with 1,000 mirrored pairs will have an MTBF of 50 years, comparable to the processor 
network. Larger disk farms will degrade the system availability further. 
 
 The solution? Build the disk system with a sparing level of two (s=2 in Equations 
(1) through (3)). Using our previous parameters, such a triply-redundant disk system will 
have an MTBF (using Equation (3) with f=3, s=2) much longer than the earth is expected 
to last. Even for large disk farms, the disk system will have MTBFs measured in earth life 
times and can be ignored so far as availability is concerned. 
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 Expanding on our architectures of Figures 4a and 4b, we now have the 
architectures shown in Figure 5. The system would have to lose three disk subsystems to 
create an outage. As calculated earlier, if it loses one processing node, it loses 25% of its 
capacity, which is expected every 25 years, on the average. If it loses two processing 
nodes, it loses 50% of its capacity, which is expected every 1,900 centuries, on the 
average. These results are summarized in Table 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Split System with Triply Redundant Data Base 
Figure 5 
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protection against a single disk failure by providing a single parity stripe. If N disks are 
needed to store the data, N+1 disks are needed for RAID 5. 
 
 The new RAID 6 configuration3 provides dual parity striping over N+2 disks and 
can survive dual disk failures. This is the triple redundancy for which we are looking. 
 
 These disk configurations are so reliable that inexpensive disks can be used. So, 
concentrating on RAID as being random arrays of inexpensive disks, we have a system 
that 
 

- has five to nine 9s availability, depending upon capacity requirements. 
- is highly scalable. 
- is no more costly than an equivalent single system that uses today’s disk 

technology (but be careful of additional software licensing and operational 
costs). 

- provides active/active application support with no data collisions. 
 

 This, I submit, is the ultimate availability architecture. 
 

Performance Impact of Synchronous Replication 
 

 Split system architectures all suffer a performance hit because of the 
requirement to keep remote data bases in synchronism. Cross-country round-trip 
communication channel delays can be 50 msec. (at half the speed of light), and an 
application must wait on these delays before it can commit a transaction. 

 
In Part 3, we showed that dual writes under a single transaction required two 

round-trip delays for each update plus two more for the commit. For campus 
environments with channel delays measured as a few milliseconds, this method may 
work well. However, replicating over long distances or replicating large transactions can 
easily add several seconds to modestly sized transactions. 

 
For larger transactions or for long distances, coordinated commits or equivalent 

will perform better. Using this technique, updates generated by the source transaction are 
sent to the target data bases via asynchronous data replication. The transactions started at 
each target are coordinated with the source transaction, and a system-wide commit is 
executed only if all targets concur that their commits will be successful. We showed in 
Part 3 that this entailed two communication channel delays plus a data replication 
latency. Typically, this will add a small fraction of a second to a transaction. Note that 
this does not affect a node’s throughput. It simply means that more servers in a server 
class will be required to handle the longer running transactions. 

 
The good news is that if you are used to one-second response times and are 

upgrading to an S86000, you probably won’t notice the difference in performance under 

                                                 
3 Advanced Computer and Network Corporation, “RAID 6,” www.acnc.com. 
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coordinated commits because the synchronous replication delay will be compensated for 
by the significantly higher speed of the S86000. 

 
Here Comes ServerNet Clusters 
 
 We have used as an example a 16-processor system split into four 4-processor 
nodes. Given the capabilities of ServerNet Clusters, this is child’s play. Today’s 
ServerNet Clusters allow up to 24 independent nodes to cooperate over a very high speed 
redundant network, and this limit will be further relaxed in the future. Coupled with HP’s 
Application Clustering Services (ACS), application domains may easily span multiple 
nodes in such a cluster. 
 
 Consider a twenty-node system. The loss of one node will cause the loss of just 
5% of the system capacity, and full service will be provided to all users once the users on 
the failed node are switched over to surviving nodes. This is hardly an outage at all. The 
loss of 10% capacity (a two-node failure) is so unlikely that it may make the headlines of 
some future galactic virtual newspaper. 
 
Database Replication – Enhancements Wanted 
 
 The real work to achieve the architectures discussed above is in the synchronous 
replication of the data bases. Certainly today, this is achievable as we have described 
throughout this series. 
 
 However, there are several database management enhancements that we should 
put on our wish list, including: 
 

• Support for distributed mirrors located at different ServerNet Cluster 
nodes. 

• Support for triply redundant distributed mirrors for very large systems. 
• Network mirrored storage (it’s coming). 
• Triply-redundant network storage (like RAID 6) for very large 

systems. 
• Distributed network storage mirrors for disaster tolerance. 

 
Conclusion 
 
 All of our work in the first four parts of this series has culminated in a fairly 
simple architecture that can double the nines of our current NonStop systems. We have 
shown a path to designing systems which 
 

- double the nines. 
- provide active/active applications without data collisions. 
- are scalable. 
- are cheap. 
- are achievable today. 
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I leave you with two final rules: 
 
Rule 19:You can have high availability, fast performance, or low cost. Pick any 
two. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Just remember –  
 
Rule 20: A system that is down has zero performance. And its cost may be 
incalculable.   
 

Encore 
 
 After promising only a five-part series, we are nonetheless going to add a sixth 
part on a very important topic for Business Continuity. “Availability (Part 6) – RPO and 
RTO” will talk about recovery time and data loss objectives when replicating systems for 
disaster recovery. 
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