
“Breaking the Four 9s Barrier”
An Informational Series on Enterprise

Computing

As Seen in The Connection, An ITUG Publication
September 2002 – December 2003

About the Authors:

Dr. Bill Highleyman, Paul J. Holenstein, and Dr. Bruce Holenstein, have a
combined experience of over 90 years in the implementation of fault-
tolerant, highly available computing systems. This experience ranges from
the early days of custom redundant systems to today’s fault-tolerant
offerings from HP (NonStop) and Stratus.

Series Topics:

Breaking the Four 9s Barrier, Part 6 - RPO and RTO (12/03)
Breaking the Four 9s Barrier, Part 5 - The Ultimate Architecture (9/03)
Breaking the Four 9s Barrier, Part 4 - Facts of Life (6/03)
Breaking the Four 9s Barrier, Part 3 - Sync Replication (4/03)
Breaking the Four 9s Barrier, Part 2 - System Splitting (2/03)
Breaking the Four 9s Barrier, Part 1 - The 9s Game (11/02)
Breaking the Four 9s Barrier, Part 0 - Intro/About the Authors (9/02)

Gravic, Inc.
Shadowbase Products Group

 17 General Warren Blvd.
Malvern, PA 19355

610-647-6250
www.ShadowbaseSoftware.com

http://www.gravic.com/shadowbase/pdf/Availability%20_Part%206_%20-%20RPO%20and%20RTO%202003_12_22.pdf
http://www.gravic.com/shadowbase/pdf/Availability%20_Part%205_%20-%20The%20Ultimate%20Architecture%202003_06_25.pdf
http://www.gravic.com/shadowbase/pdf/Availability%20_Part%204_%20-%20Facts%20of%20Life%202003_04_14.pdf
http://www.gravic.com/shadowbase/pdf/Availability%20_Part%203_%20-%20Sync.%20Replication%202003_09_29.pdf
http://www.gravic.com/shadowbase/pdf/Availability%20_Part%202_%20-%20System%20Splitting%202002_11_07.pdf
http://www.gravic.com/shadowbase/pdf/Availability%20_Part%201_%20-%20The%209s%20Game%202002_09_18.pdf
http://www.gravic.com/shadowbase/pdf/Availability%20_Part%200_%20-%20Introduction%20and%20About%20the%20Authors%20-%20Breaking%20the%20Four%209s%20Barrier%202003_3_26.pdf

 1

Availability (Part 1) – The 9s Game

Dr. Bill Highleyman
Paul J. Holenstein

Dr. Bruce D. Holenstein

True or False:

• Adding processors to your NonStop system increases its reliability.

• A 16-processor NonStop system has the reliability of a UNIX box.

• A NonStop processor is less reliable than a UNIX processor.

 These are indeed provocative questions, and their answers are not straightforward.
This paper develops some simple, though not necessarily intuitive, concepts that help
answer these and other questions. More importantly, these concepts lead to some
straightforward steps that you can take to improve the reliability of your system – steps as
simple as being aware of how you allocate processes to processors.

 This is the first paper in a five part series. The successive papers are co-authored
with Dr. Bruce Holenstein and Paul J. Holenstein and explore in more depth certain
aspects presented in this paper:

Availability (Part 2) – System Splitting will point out that splitting a system, a common
architecture for disaster recovery, significantly improves reliability at little or no
additional cost.

Availability (Part 3) – Synchronous Replication will compare the efficiencies of
synchronous replication techniques that may be used to keep database replicates in a split
system in exact synchronism, thus avoiding database corruption due to update collisions.

Availability (Part 4) – The Facts of Life will explore what really makes systems fail and
what if anything we can do about it. This part draws heavily on actual experience
documented by Jim Gray, one of the significant contributors to NonStop computing.

Availability (Part 5) – The Ultimate Architecture will use the concepts explored in the
previous parts to suggest a system architecture that can dramatically increase system
availability at little additional cost.

Availability (Part 6) – RTO and RPO explains the concepts of “Recovery Time
Objective (RTO)”, or the measure of how much time it takes to recover from a disaster,
and “Recovery Point Objective (RPO)”, or the measure of how much data is lost in the
event of a disaster, and how the different recovery architectures affect each.

 2

What is Reliability?

 The questions above all refer to reliability. But before we go much further, we
have to agree on how to measure reliability.

There are actually two components that impact the reliability of a system – how
long it will work before it fails and then how long it will take to fix it. We call the first
the mean time before failure (MTBF) and the second the mean time to repair (MTR).

To a space satellite designer, reliability is MTBF. Once the satellite fails, it is

gone forever. It is not repairable. Clearly, a satellite with a 10-year MTBF is ten times
more reliable than a satellite with a one year MTBF.

However, when it comes to life and property protection, reliability is MTR. In a

911 system, an outage of 30 seconds may be simply an aggravating hiatus; but an outage
of one hour could mean death by cardiac arrest or a building burned to the ground.

In large transaction processing systems, reliability is often measured as down

time. Down time has a cost associated with it – perhaps $1,000 per hour or $100,000 per
hour. (Of course, MTR plays a role here as well, as the longer the down time, the higher
the cost in many cases – from customer annoyance to lost sales to lost customers.) Down
time alternatively can be measured as the proportion of time that a system is up, a
measure that we call the availability of the system. Since the system is always either up
or down, then

 availability MTBFA
MTBF MTR

= =
+

 (1a)

Note that this also can be written as

 1 MTRA= 1MTR MTBF1+
MTBF

≈ − (1b)

where “≈” means “approximately equal to,” and the approximation is valid so long as
MTBF is very much greater than MTR (which certainly is true in the cases that we will
be considering).

 It is availability that this paper is all about. When we speak of reliability, we mean
availability. A system with .999 availability is more reliable than a system with .99
availability.

 More specifically, we will compare the reliability of systems by comparing their
probability of failure. If a system has an availability of .99, then it has a probability of
failure of 1-.99, or .01. That is, it will be down 1% of the time. Using Equation (1b),

 3

 probability of failure MTR F 1 A
MTBF

= = − ≈ (2)

 Jim Gray has characterized availability and reliability in a very folksy way1:

“Availability is doing the right thing within the specified response time. Reliability is not
doing the wrong thing.”

 As outlined above, we apply measures to these:

 Availability = Doing the right thing = A
 Failure = Doing the wrong thing = F = (1-A)
 Reliability = Not doing the wrong thing = 1/(1-A)

 Consider System A, which is up 99% of the time, and System B, which is up
99.9% of the time. System A has an availability of .99, a failure probability of .01, and a
reliability measure of 100. System B has an availability of .999, a failure probability of
.001, and a reliability measure of 1000. Thus we say that System B is ten times more
reliable than System A.

 This is how we will use the term “reliability” throughout this paper.

Some Caveats

There is some algebra used in this paper to develop availability concepts. About
the worst relationship looks like

 +≈ − − s 1A 1 f(1 a)

If you are algebraically challenged, don’t despair. Just skip the math and grasp the

concept. The concepts are clearly stated and don’t depend upon the math for
understanding. Besides, charts and tables are provided so that you can use these
relationships without ever breaking out a calculator.

Also, we are interested in developing concepts and rules of thumb. This requires

that we take a simplistic view of things. You will be tempted to say, “Yes, but my system
does this” or “You haven’t considered that.” True, but we are taking a 50,000 foot view
of things in order to develop some general concepts. Moreover, the concepts developed
herein will allow those of you who are motivated to drop down to a 5,000 foot view. A
500 foot view, however, is probably obscured by a lack of good data and too many trees
in your way.

1 Gray, J., “Why Do Computers Stop and What Can Be Done About It,” Tandem Technical Report 85-7;
June, 1985.

 4

The simplistic view presented in this paper is most applicable to repairable
systems. Software failures generally are recovered rather than repaired. They are more
complex and are considered in Part 4.

9s – The Measure of Availability

 When we calculate availability for today’s systems, we will get numbers like
.99999. Saying this gets cumbersome and can lose the meaning. So we talk about
availability in terms of 9s. “.99999” is “five 9s.” “.998” is “a little less than three 9s.”
“.99992” is “a little more than four 9s.”

 Though we will speak of 9s, this measure can be converted to average down time
over any given period, as shown in Table 1.

Nines % Available Hours/Year Minutes/Month

2 99% 87.60 438.
3 99.9% 8.76 43.8
4 99.99% .88 4.38
5 99.999% .09 .44
6 99.9999% .01 .04

Average 24x7 Down Time

Table 1

 Of course, an availability of three 9s does not mean that the system will be down
8.76 hours each year. It means that over a sufficiently long period of time, one can expect
that the system will be down eight or nine hours per year. This could occur as short 1
minute failures every 17 hours or as a one-day failure every three years.

 Specifically, knowing the availability tells us nothing about the MTBF or MTR.
But knowing the availability and either MTBF or MTR tells us the other. More to the
point, from Equation (1) we can deduce that

 MTBF MTR /(1 A)≈ − (3)
 MTR MTBF(1 A)≈ − (4)

Thus, if we know that our availability is three 9s and if we have an MTR of 4 hours, then
we have an MTBF of 4,000 hours.

Today’s Systems

 How do today’s systems rate so far as availability is concerned? Results
compiled by the Gartner Group2 indicate the following availabilities:

2 Gartner Group; 2002.

 5

 NonStop .9999
 Mainframe .999
 Open VMS .998
 AS400 .998
 HPUX .996
 Tru64 .996
 Solaris .995
 NT Cluster .992 - .995

 Thus mainframes are four to five times more reliable than UNIX systems, and
NonStop systems are ten times more reliable than mainframes.

Simple Systems

 Let us start our conceptual journey by looking at the two simplest systems and
review a little probability theory along the way.

 We consider a system made up of subsystems, each with an availability of a. The
availability of the entire system is A.

a) Non-Redundant System

 Figure 1 shows a system comprising two non-redundant subsystems. Both
must work in order for the system to work.

Non-Redundant System

Figure 1

 Let the availability of subystem 1 be a1 and of subsystem 2 be a2.
Remember that each of these availabilities is the probability that the subsystem
will be operational. In order that the system be operational, subsystem 1 and
subsystem 2 must be operational. The probability of this is the product of the
component probabilities:

 1 2A a a= (5)

Rule 1: If all subsystems must be operational, then the availability of the
system is the product of the availabilities of the subsystems.

a1 a2

 6

b) Redundant System

 Figure 2 shows a redundant system comprising two identical subsystems,
but in this case the system is operational if subsystem 1 is operational or if
subsystem 2 is operational. In order for the system to be down, subsystem 1 and
subsystem 2 must be down. Since the probability that either subsystem will be
down is (1-a), then the probability that both will be down is (1-a)2. The system
availability is therefore

 2A 1 (1 a)= − − (6)

Redundant System
Figure 2

Double Your 9s

 Let us explore Equation (6) a little further. If the subsystem availability a is .99,
then the system availability A is

 A = 1 - .01 x .01 = .9999

 Note that we have doubled the 9s from a subsystem availability of two 9s to a
system availability of four 9s.

Rule 2: Providing a backup doubles the 9s.

 This is the basis for the high reliability of NonStop systems and for the even
higher reliability that can be achieved by replicating a system using data replication
techniques (more about that in Part 2).

a a

 7

The Real NonStop World

 Redundant systems are the basis for the high availability (and high scalability as
well) of NonStop systems. But they are a bit more complex than the simple systems
which we have just considered:

• They contain multiple processors (2-16 per node).

• They comprise multiple redundant subsystems – processors, processes,
disks, communications, ServerNet fabric.

• Processes critical to system operation are replicated as process pairs.

• Processes are distributed randomly across processors (usually to satisfy
load balancing considerations).

 Consistent with our 50,000 foot view, we will consider a NonStop system as a
single group of like subsystems. This is a more accurate representation of K-series
systems, but for our purposes it will be applicable to S-series systems as well. After all,
mirrored disk pairs and communication channels are assigned to processor pairs; and we
assume that the reliability of the ServerNet fabric is high enough to be ignored.

 Therefore, a subsystem is a processor and its collection of disks and other
peripherals. Certainly in a real system each subsystem will be somewhat different since
different processors have associated with them different numbers of devices, but our
assumption that all subsystems are similar is warranted by the simplifications that allow
us to develop some general concepts.

 Furthermore, we will assume a subsystem availability of .995. This is close to the
K-series subsystem availability of .996 reported to the author by Tandem in the mid-
1990s. Today’s systems undoubtedly comprise more reliable components and are
manufactured using higher quality techniques, but they are also more complex. It is
therefore assumed that this number is still in the ballpark.

 Note that this value for availability includes all sources of failure: hardware,
software, maintenance, and operations. More about that in Part 4.

Randomly Distributed Process Pairs

 So far as availability is concerned, the heart of a NonStop system is its critical
processes. The loss of any one of these processes will cause a system failure, either
immediately or after a short period of time due to system degradation. These processes
include the disk processes (DP2), terminal control processes (TCP), PATHMON, and a
slew of monitors for communication and other subsystems.

 8

 Therefore, these processes are provided as process pairs so that they will survive
any single processor failure. Coupled with transaction protection that guarantees that no
data will be corrupted as a result of a fault, these features provide the high availability for
which NonStop systems are known.

 But a dual processor failure may take down a critical process and result in a
system outage. Let us take a look at a four-processor system in which critical processes
are randomly distributed across all processors so that any dual processor failure will take
down the system (Figure 3).

Randomly Distributed Processes

Figure 3

 Note that there are six possible ways that two out of four processors can fail. We
call these failure modes. Since any given two processors will fail with a probability of (1-
a)2, and since there are six ways that this can happen, then the system will fail with a
probability of 6(1-a)2. Thus, its availability is3

 2A 1 6(1 a)≈ − −

 You can probably figure out that for n processors the number of failure modes is
n(n-1)/2. For the above example, n=4 and the number of failure modes is 4x3/2=6.

Process/Processor Pairing

 Figure 4 shows an alternate strategy for distributing process pairs. Processors are
organized into pairs, and process pairs are constrained to run only in processor pairs. For
a four-processor system, there are only two failure modes. Either the first pair of

3 This relation is an approximation since it does not account for failure modes involving more than two
subsystems. Since the probability of three or more failures is extremely small, this relation is quite accurate.
Besides, it’s a lot simpler than the fully accurate relation.

failures

A

F

E

D

C

B

A

B

C

D

E

F

X

XX

X

XX

XX

XX

XX

Any pair of processor failures causes a system failure

 9

processors must fail or the second pair must fail in order to cause a system failure. Thus,
the availability of this configuration is

 ≈ − − 2A 1 2(1 a)

This configuration has three times the reliability of the randomly distributed
configuration. In general, for n subsystems, the number of failure modes is n/2 for this
strategy.

 In fact, the advantage of process/processor pairing gets better as the system gets
larger. Consider an eight processor system (where f is the number of failure modes):

 n a f A

random 8 .995 28 .9993
paired 8 .995 4 .9999

 For an eight processor system, a paired configuration is seven times as reliable as
a random configuration. For a sixteen processor system, reliability is improved by a
factor of 15!

Rule 3: System reliability is inversely proportional to the number of failure
modes.

Rule 4: Organize processors into pairs, and allocate each process pair only to a
processor pair.

Process Pairing

Figure 4

failures

A

F

E

D

C

B

A

B

C

D

E

F

XX

XX

Only certain pairs of processor failures cause a system failure

 10

Availability in General

 We have seen above that failure probability is proportional to the number of
failure modes. Thus, letting f be the number of failure modes, we may write

 ≈ − − 2A 1 f(1 a)

 This relationship assumes that each process is backed up by only one other
process (we can consider the backup process as a spare which is put into service if the
primary process fails).

 But what if we have two spares? Then any given failure occurs only with a
probability of (1-a)3. In general, if we have s spares, then the system will fail only if we
have s+1 subsystem failures. Any particular failure of s+1 subsystems will occur with a
probability of (1-a)s+1, and the system availability becomes

 s 1A 1 F 1 f(1 a) += − ≈ − − (7)

 This is our general availability equation.4 Note that it reduces to our simple
example represented by Equation (6) for f=1 and s=1.5

 There is one assumption that is inherent in our discussion so far, and that is that
the system is returned to service as soon as a failed subsystem has been repaired. It needs
no further recovery. This assumption is explored further in Part 4.

More Sparing

 Note that from Equation 7, reliability increases exponentially with the number of
spares. If a is .99, each additional level of sparing adds another two 9s to the system
availability. Single sparing gives a system availability of four 9s, double sparing gives an
availability of six 9s, and so on.

Rule 5: System availability increases dramatically with increased sparing.
Whatever the availability of a subsystem is, each additional level of sparing adds
that many 9s to the overall system availability.

 How do we increase process sparing in NonStop systems? There are two cases:

• For checkpointed process pairs, allow a process to start a new backup in a
surviving processor if the process loses its backup due to a processor

4 As we said earlier, this is an approximation. However, not only is it conservative in that it gives a lower
value for A than the actual value, but it is within 5% for the range of values in which we are interested.
5 This result is an extension of an excellent summary of availability found in Chapter 8, “Reliability
Calculations,” Burt H. Liebowitz and John H. Carson, “Multiple Processing Systems for Real-Time
Applications,” Prentice-Hall;1985.

 11

failure.

• For persistent processes that are restarted in another processor by a
monitor should the process fail because of a processor failure, give the
monitor the choice of more than two processors in which to start the
process (of course, the monitor must be redundant as well).

How Many Failure Modes?

 As we have discussed, the worst availability case is the random distribution of
processes. For n subsystems and s spares, the number of failure modes for this case is the
number of ways that s+1 subsystems can fail out of n systems.6 These maximum values
for f are shown in Table 2.

 We can see from this table that the maximum number of failure modes for a
single-spared 16 processor system is 120. However, we know that if we pair processors
and processes, we can reduce the number of failure modes to 8, a 15:1 reduction as we
have earlier noted.

 Processors (n)
 2 4 6 8 10 12 14 16
Spares (s)

0 2 4 6 8 10 12 14 16
1 1 6 15 28 45 66 91 120
2 4 20 56 120 220 364 560
3 1 15 70 210 495 1001 1820
4 6 56 252 792 2002 4368
5 1 28 210 924 3003 8008
6 8 120 792 3432 11440
7 1 45 495 3003 12870
8 10 220 2002 11440
9 1 66 1001 8008

10 12 364 4368
11 1 91 1820
12 14 560
13 1 120
14 16
15 1

Maximum Failure Modes (f)

Table 2

6 For Math Nuts: This is n!/(n-s-1)!(s+1)!

 12

 Since reliability is proportional to failure modes (Rule 3), we can lose more than a
nine from our achievable availability for a 16 processor system if we are not careful with
process allocation. More about this later.

The Impact of Repair Time

 So far we have talked about availability as the predominant measure of reliability.
But as we indicated in the opening to this paper, the system mean time to repair, MTR, is
often an equally important parameter. Let us look at system MTR and its relation to
subsystem mean time to repair, mtr.

 From Equation (1a), we can express subsystem availability a in terms of its mtbf
and mtr:

 mtbfa
mtbf mtr

=
+

where
 a is the subsystem availability.
 mtbf is the subsystem mean time before failure.
 mtr is the subsystem mean time to repair.

 Note that we are using upper case MTBF and MTR to represent the system, and
lower case mtbf and mtr to represent the subsystem.

 A little algebraic manipulation results in

 − = − ≈
+

1 mtr1 a 1 mtr mtbf1
mtbf

 (8)

 The approximation depends upon mtbf being much greater than mtr. This is
certainly true by orders of magnitude in the systems that we are considering.

 Substituting Equation (8) into Equation (7), we have

s 1mtrA 1 F 1 f

mtbf

+
 = − ≈ −  
 

 (9)

 We see that reliability is exponentially affected by subsystem mtr. For one spare
(s = 1), the system failure probability will be cut by a factor of 4 if we can cut subsystem
mtr in half.

 13

 But how does subsystem mtr affect the overall system MTR and its MTBF? It can
be shown7 that

 mtrMTR
(s 1)

=
+

 (10)

For one spare, system MTR is half the subsystem mtr. Thus, for one spare, if our
subsystem mtr is four hours, then our system MTR is two hours.

Rule 6: For a single spare system, the system MTR is one-half the subsystem mtr.

 Furthermore, if we reduce mtr by a factor of k, we will reduce MTR by a factor of
k. Since we have seen that the failure probability will be reduced by k2 (Equation (9)),
then from Equation (2) we can conclude that we will increase our system MTBF by a
factor of k.

Rule 7: For the case of a single spare, cutting subsystem mtr by a factor of k will
reduce system MTR by a factor of k and increase the system MTBF by a factor of
k, thus increasing system reliability by a factor of k2.

 For instance, let us say that our system has an MTBF of five years and an mtr of 4
hours, leading to an MTR of two hours. If we can cut mtr in half to two hours, our system
MTR will be reduced to one hour; and our system MTBF will be increased to ten years.
Our reliability has increased by a factor of four as indicated above.

Some Helpful Charts

 Figure 4 shows availability as a function of the number of processors and the
number of spares for random distribution of processes. Note that no matter the number of
processors, each additional spare adds about two 9s to the system availability.

 Figure 5 shows availability as a function of spares and failure modes. Let’s look
at process pairing and random distribution for 16 processors. For process pairing (f=8),
system availability is almost four 9s. For random distribution (f=120), system availability
is about two and a half nines. My! That’s about the availability of a UNIX box.

7 Highleyman, W. H., “The Impact of Mean Time to Repair on System Availability,” ITI, Inc. white paper,
August 19, 2002.

 14

Availability as a Function of Processors and Spares

Figure 5

Availability as a Function of Spares, Failure Modes
Figure 6

Availability as a Function of Failure Modes (a=.995)

0

2

4

6

8

1 10 100 1,000 10,000

Failure Modes

A
va

ila
bi

lit
y

(9
's

)

5 50 500 5,000

1 spare

3 spares

4 spares

2 spares

Availability as a Function of Failure Modes (a=.995)

Failure Modes

A
va

ila
bi

lit
y

(9
s)

System Availability (a=.995)

0

2

4

6

8

0 1 2 3 4

Spares

A
va

ila
bi

lit
y

(9
's

)

processors = 2

4 86 16141210

System Availability (a=.995)

Spares

A
va

ila
bi

lit
y

(9
s)

 15

Answers

 Let’s return to our initial provocative statements.

• Adding processors to your NonStop system increases reliability.

 Well, it all depends. If sparing remains the same, then the number of failure
modes increases; and reliability decreases. However, if the extra processors are used to
increase sparing, then reliability can dramatically increase. However, since we don’t
generally change the design of the system when we add processors, this statement is
typically false. Adding processors reduces reliability.

• A 16-processor NonStop system has the reliability of a UNIX box.

 Again, it all depends. If you are distributing processes randomly, then this is true.
However, if you are intelligent in the way you distribute processes, your system
reliability will beat that of a UNIX system by an order of magnitude or more. So
hopefully, your answer to this is false.

• A NonStop processor is less reliable than a UNIX processor.

 The answer to this one is probably true, but so what? In order to build a truly
fault-tolerant system, all components, both hardware and software, must be fail-fast so
that corrupted data does not get propagated. To achieve this, NonStop processor boards
use a pair of on-board lock-step processors which continually compare results. If there is
a mismatch, the processor board shuts down immediately. Thus, the processor board can
fail if either on-board processor fails, giving two failure modes instead of one for the
UNIX processor. Given comparable component and manufacturing quality and
comparable component count per processor, we would expect the NonStop processor
board to fail twice as often as a UNIX processor. But this is a trivial price to pay for the
ultimate fault tolerance provided. NonStop’s fault tolerant architecture beats non-fault
tolerant architecture by two 9s or so (100 times more reliable).

 Here’s a bonus question:

• To double your capacity, should you upgrade your 4-processor S74K to an 8-
processor S74K or to a 4-processor S86K? (Assumes an S86K processor is twice
as fast as an S74K processor, which is almost true).

 A 4-processor S86K will not only be more reliable, but its response time also will
be almost twice as fast.

 16

Summary

 We summarize the concepts presented above by considering how we might
improve reliability. Our general availability relationships of Equations (1), (7), (9), and
(10) state that8

 MTBF MTRA 1
MTBF MTR MTBF

= ≈ −
+

 (1)

s 1

s 1 mtrA 1 f(1 a) 1 f
mtbf

+
+  ≈ − − ≈ −  

 
 (7), (9)

 mtrMTR
s 1

=
+

 (10)

 From these equations, we can also determine that

smtbf mtbfMTBF

f(s 1) mtr
 ≈  +  

 (11)

 These expressions relate system availability A, system mean time to repair, MTR,
and system mean time to failure, MTBF, to four parameters on which we can get our
hands – f, s, mtbf, and mtr:

8 These equations are restatements of the Einhorn relationships. See Einhorn, S. J., “Reliability Prediction
for Repairable Redundant Systems,” Proceedings of the IEEE; February, 1963.

 17

mtbf Subsystem mean time to failure is out of our control. Not much we can
do about that.

mtr Reductions in subsystem repair time have an exponential impact on
availability. In a one-spare system, cutting subsystem repair time in
half provides a four-fold improvement in reliability. Cutting it by a
factor of ten provides 100 times more reliability – two 9s on the
availability scale. Consider a tighter service contract or, for larger
users, on-site spares and on-site maintenance.

s There’s not much that we as users can do to increase sparing of NSK
critical processes. HP would have to decide that the significant
software development effort to do this is worthwhile. Until they take
this step, there is not much sense in critical applications processes
being written with sparing in excess of one.

f Ah! We can control the number of failure modes. As we’ve shown,
intelligent distribution of critical processes can reduce failure rates
significantly, picking up one or two nines if we work at it.

How Far Should We Go?

 From Figure 6, we see that we can achieve an availability of four 9s with our
NonStop systems if we can keep the failure modes to five or less. Isn’t this enough?

 The Standish Group9 has defined the following application categories and their
required availability:

 Class 9s

 Non-critical 2
 Task critical 3
 Business critical 4
 Mission critical 5
 Safety critical 6

Availability Requirements

(The Standish Group)
Table 3

 So if you have a need that you would characterize as mission critical or safety
critical, you’d better mind your 9s.

9 Standish Group; 2002.

 18

A Case Study

 Amtrak provided a real-life case study of these concepts with their real-time train
control system for the busy Northeast corridor. Shown at a very high level in Figure 7,
this system uses a NonStop system to monitor and control trains via a duplexed
communication link to track-side devices (signals, switches, occupancy detectors). A
redundant console system is used by the train dispatchers to monitor and direct train
traffic.

Amtrak Train Control System
Figure 7

 A detailed analysis of the system availability (whose results are shown in Figure
7) predicted a system availability of .9995. Not bad! Unfortunately, the specifications for
the system required an availability of .9998. The design had missed the reliability mark
by a factor of 2.5. To make matters worse, this was a fixed price contract; and the system
was not going to be accepted unless the availability requirement was met.

 It was clear that the culprit was the 8-processor K-series system that had an
availability of .99952 based on the worst case of 28 failure modes. However, a little
algebra showed that if we reduced the failure modes to 12, we met the specification.
Process allocation guidelines were put in place, and the system was accepted. By the
way, it went into service in July, 1999, and hasn’t failed yet.

processor
processor

processor
processor

processor
processor

processor
processor

Dispatcher
Consoles

A = .999984

Control System
n = 8, s = 1

a = .996
A = .99952

Comm Subsystem

A = .9999992

System Availability = .999984 x .99952 x .9999992 = .99950
Failure Rate is .0005/.0002 = 2.5 times worse than required.
Solution: Reduce failure modes from 28 to 12 thrugh software configuration.

Required Availability = .9998

Field
Devices

 19

 This was an inexpensive fix to a potentially very expensive problem using the
concepts discussed in this paper.

What’s Next

 Bear in mind that all we have really talked about so far are general availability
concepts as applied to redundant hardware systems. The consideration of faults caused by
software is a much more complex subject which is considered in Part 4 of this series of
articles.

 In Parts 2 and 3, we explore in more depth the availability considerations and
advantages of replicating and splitting systems. In Part 4, we delve deeper into the impact
of software and operational errors as well as environmental faults. In Part 5, we put all of
this together to suggest a system architecture that can dramatically increase availability at
little additional cost.

	ITUG Availability Corner- Breaking the Four 9s Barrier.pdf
	Availability _Part 1_ - The 9s Game 2002_09_18

