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Availability (Part 1) – The 9s Game 
 

Dr. Bill Highleyman 
Paul J. Holenstein 

Dr. Bruce D. Holenstein 
 

 
True or False: 
 

• Adding processors to your NonStop system increases its reliability. 
 

• A 16-processor NonStop system has the reliability of a UNIX box. 
 

• A NonStop processor is less reliable than a UNIX processor. 
 
 These are indeed provocative questions, and their answers are not straightforward. 
This paper develops some simple, though not necessarily intuitive, concepts that help 
answer these and other questions. More importantly, these concepts lead to some 
straightforward steps that you can take to improve the reliability of your system – steps as 
simple as being aware of how you allocate processes to processors. 
 
 This is the first paper in a five part series. The successive papers are co-authored 
with Dr. Bruce Holenstein and Paul J. Holenstein and explore in more depth certain 
aspects presented in this paper: 
 
Availability (Part 2) – System Splitting will point out that splitting a system, a common 
architecture for disaster recovery, significantly improves reliability at little or no 
additional cost. 
 
Availability (Part 3) – Synchronous Replication will compare the efficiencies of 
synchronous replication techniques that may be used to keep database replicates in a split 
system in exact synchronism, thus avoiding database corruption due to update collisions. 
 
Availability (Part 4) – The Facts of Life will explore what really makes systems fail and 
what if anything we can do about it. This part draws heavily on actual experience 
documented by Jim Gray, one of the significant contributors to NonStop computing. 
 
Availability (Part 5) – The Ultimate Architecture will use the concepts explored in the 
previous parts to suggest a system architecture that can dramatically increase system 
availability at little additional cost. 
 
Availability (Part 6) – RTO and RPO explains the concepts of  “Recovery Time 
Objective (RTO)”, or the measure of how much time it takes to recover from a disaster, 
and “Recovery Point Objective (RPO)”, or the measure of how much data is lost in the 
event of a disaster, and how the different recovery architectures affect each. 
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What is Reliability? 
 
 The questions above all refer to reliability. But before we go much further, we 
have to agree on how to measure reliability. 
 

There are actually two components that impact the reliability of a system – how 
long it will work before it fails and then how long it will take to fix it. We call the first 
the mean time before failure (MTBF) and the second the mean time to repair (MTR). 

 
To a space satellite designer, reliability is MTBF. Once the satellite fails, it is 

gone forever. It is not repairable. Clearly, a satellite with a 10-year MTBF is ten times 
more reliable than a satellite with a one year MTBF. 

 
However, when it comes to life and property protection, reliability is MTR. In a 

911 system, an outage of 30 seconds may be simply an aggravating hiatus; but an outage 
of one hour could mean death by cardiac arrest or a building burned to the ground. 

 
In large transaction processing systems, reliability is often measured as down 

time. Down time has a cost associated with it – perhaps $1,000 per hour or $100,000 per 
hour. (Of course, MTR plays a role here as well, as the longer the down time, the higher 
the cost in many cases – from customer annoyance to lost sales to lost customers.) Down 
time alternatively can be measured as the proportion of time that a system is up, a 
measure that we call the availability of the system. Since the system is always either up 
or down, then 
 

   availability MTBFA
MTBF MTR

= =
+

   (1a) 

 
Note that this also can be written as 
 

   1 MTRA= 1MTR MTBF1+
MTBF

≈ −     (1b) 

 
where “≈” means “approximately equal to,” and the approximation is valid so long as 
MTBF is very much greater than MTR (which certainly is true in the cases that we will 
be considering). 
    
 It is availability that this paper is all about. When we speak of reliability, we mean 
availability. A system with .999 availability is more reliable than a system with .99 
availability. 
  
 More specifically, we will compare the reliability of systems by comparing their 
probability of failure. If a system has an availability of .99, then it has a probability of 
failure of 1-.99, or .01. That is, it will be down 1% of the time. Using Equation (1b), 
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  probability of  failure MTR F 1 A
MTBF

= = − ≈   (2) 

 
 Jim Gray has characterized availability and reliability in a very folksy way1: 
 
“Availability is doing the right thing within the specified response time. Reliability is not 
doing the wrong thing.” 
 
 As outlined above, we apply measures to these: 
 
 Availability = Doing the right thing = A 
 Failure = Doing the wrong thing = F = (1-A) 
 Reliability = Not doing the wrong thing = 1/(1-A) 
 
 Consider System A, which is up 99% of the time, and System B, which is up 
99.9% of the time. System A has an availability of .99, a failure probability of .01, and a 
reliability measure of 100. System B has an availability of .999, a failure probability of 
.001, and a reliability measure of 1000. Thus we say that System B is ten times more 
reliable than System A. 
 
 This is how we will use the term “reliability” throughout this paper. 
 
Some Caveats 
 

There is some algebra used in this paper to develop availability concepts. About 
the worst relationship looks like 

 
  +≈ − − s 1A 1 f(1 a)   
 
If you are algebraically challenged, don’t despair. Just skip the math and grasp the 

concept. The concepts are clearly stated and don’t depend upon the math for 
understanding. Besides, charts and tables are provided so that you can use these 
relationships without ever breaking out a calculator. 

 
Also, we are interested in developing concepts and rules of thumb. This requires 

that we take a simplistic view of things. You will be tempted to say, “Yes, but my system 
does this” or “You haven’t considered that.” True, but we are taking a 50,000 foot view 
of things in order to develop some general concepts. Moreover, the concepts developed 
herein will allow those of you who are motivated to drop down to a 5,000 foot view. A 
500 foot view, however, is probably obscured by a lack of good data and too many trees 
in your way. 

 

                                                 
1 Gray, J., “Why Do Computers Stop and What Can Be Done About It,” Tandem Technical Report 85-7; 
June, 1985. 
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The simplistic view presented in this paper is most applicable to repairable 
systems. Software failures generally are recovered rather than repaired. They are more 
complex and are considered in Part 4. 
 
9s – The Measure of Availability 
 
 When we calculate availability for today’s systems, we will get numbers like 
.99999. Saying this gets cumbersome and can lose the meaning. So we talk about 
availability in terms of 9s. “.99999” is “five 9s.” “.998” is “a little less than three 9s.” 
“.99992” is “a little more than four 9s.” 
 
 Though we will speak of 9s, this measure can be converted to average down time 
over any given period, as shown in Table 1. 
 

Nines % Available Hours/Year Minutes/Month 
    
2 99% 87.60 438. 
3 99.9% 8.76 43.8 
4 99.99% .88 4.38 
5 99.999% .09 .44 
6 99.9999% .01 .04 

 
Average 24x7 Down Time 

Table 1 
 
 Of course, an availability of three 9s does not mean that the system will be down 
8.76 hours each year. It means that over a sufficiently long period of time, one can expect 
that the system will be down eight or nine hours per year. This could occur as short 1 
minute failures every 17 hours or as a one-day failure every three years. 
 
 Specifically, knowing the availability tells us nothing about the MTBF or MTR. 
But knowing the availability and either MTBF or MTR tells us the other. More to the 
point, from Equation (1) we can deduce that 
 
   MTBF MTR /(1 A)≈ −     (3) 
   MTR MTBF(1 A)≈ −      (4) 
 
Thus, if we know that our availability is three 9s and if we have an MTR of 4 hours, then 
we have an MTBF of 4,000 hours. 
 
Today’s Systems 
 
 How do today’s systems rate so far as availability is concerned?  Results 
compiled by the Gartner Group2 indicate the following availabilities: 

                                                 
2 Gartner Group; 2002. 
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 NonStop  .9999 
 Mainframe  .999 
 Open VMS  .998 
 AS400   .998 
 HPUX   .996 
 Tru64   .996 
 Solaris   .995 
 NT Cluster  .992 - .995 

 
 Thus mainframes are four to five times more reliable than UNIX systems, and 
NonStop systems are ten times more reliable than mainframes. 
 
Simple Systems 
 
 Let us start our conceptual journey by looking at the two simplest systems and 
review a little probability theory along the way. 
 
 We consider a system made up of subsystems, each with an availability of a. The 
availability of the entire system is A. 
 
a) Non-Redundant System 
 

 Figure 1 shows a system comprising two non-redundant subsystems. Both 
must work in order for the system to work. 

 
Non-Redundant System 

Figure 1 
 

 Let the availability of subystem 1 be a1 and of subsystem 2 be a2. 
Remember that each of these availabilities is the probability that the subsystem 
will be operational. In order that the system be operational, subsystem 1 and 
subsystem 2 must be operational. The probability of this is the product of the 
component probabilities: 

 
   1 2A a a=       (5) 
 

Rule 1: If all subsystems must be operational, then the availability of the 
system is the product of the availabilities of the subsystems. 

a1 a2
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b) Redundant System 

 
 Figure 2 shows a redundant system comprising two identical subsystems, 
but in this case the system is operational if subsystem 1 is operational or if 
subsystem 2 is operational. In order for the system to be down, subsystem 1 and 
subsystem 2 must be down. Since the probability that either subsystem will be 
down is (1-a), then the probability that both will be down is (1-a)2. The system 
availability is therefore 
 
  2A 1 (1 a)= − −      (6) 
 
 

 
 
 

Redundant System 
Figure 2 

 
 
Double Your 9s 
 
 Let us explore Equation (6) a little further. If the subsystem availability a is .99, 
then the system availability A is 
 
  A = 1 - .01 x .01 = .9999 
 
 Note that we have doubled the 9s from a subsystem availability of two 9s to a 
system availability of four 9s. 
 

Rule 2:  Providing a backup doubles the 9s. 
 
 This is the basis for the high reliability of NonStop systems and for the even 
higher reliability that can be achieved by replicating a system using data replication 
techniques (more about that in Part 2). 
 
 

a a
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The Real NonStop World 
 
 Redundant systems are the basis for the high availability (and high scalability as 
well) of NonStop systems. But they are a bit more complex than the simple systems 
which we have just considered: 
 

• They contain multiple processors (2-16 per node). 
 

• They comprise multiple redundant subsystems – processors, processes, 
disks, communications, ServerNet fabric. 
 

• Processes critical to system operation are replicated as process pairs. 
 

• Processes are distributed randomly across processors (usually to satisfy 
load balancing considerations). 

 
 Consistent with our 50,000 foot view, we will consider a NonStop system as a 
single group of like subsystems. This is a more accurate representation of K-series 
systems, but for our purposes it will be applicable to S-series systems as well. After all, 
mirrored disk pairs and communication channels are assigned to processor pairs; and we 
assume that the reliability of the ServerNet fabric is high enough to be ignored. 
 
 Therefore, a subsystem is a processor and its collection of disks and other 
peripherals. Certainly in a real system each subsystem will be somewhat different since 
different processors have associated with them different numbers of devices, but our 
assumption that all subsystems are similar is warranted by the simplifications that allow 
us to develop some general concepts. 
 
 Furthermore, we will assume a subsystem availability of .995. This is close to the 
K-series subsystem availability of .996 reported to the author by Tandem in the mid-
1990s. Today’s systems undoubtedly comprise more reliable components and are 
manufactured using higher quality techniques, but they are also more complex. It is 
therefore assumed that this number is still in the ballpark. 
 
 Note that this value for availability includes all sources of failure: hardware, 
software, maintenance, and operations. More about that in Part 4. 
 
 
Randomly Distributed Process Pairs 
 
 So far as availability is concerned, the heart of a NonStop system is its critical 
processes. The loss of any one of these processes will cause a system failure, either 
immediately or after a short period of time due to system degradation. These processes 
include the disk processes (DP2), terminal control processes (TCP), PATHMON, and a 
slew of monitors for communication and other subsystems. 
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 Therefore, these processes are provided as process pairs so that they will survive 
any single processor failure. Coupled with transaction protection that guarantees that no 
data will be corrupted as a result of a fault, these features provide the high availability for 
which NonStop systems are known. 
 
 But a dual processor failure may take down a critical process and result in a 
system outage. Let us take a look at a four-processor system in which critical processes 
are randomly distributed across all processors so that any dual processor failure will take 
down the system (Figure 3). 

 
Randomly Distributed Processes 

Figure 3 
 
 

 Note that there are six possible ways that two out of four processors can fail. We 
call these failure modes. Since any given two processors will fail with a probability of (1-
a)2, and since there are six ways that this can happen, then the system will fail with a 
probability of 6(1-a)2. Thus, its availability is3 
 
   2A 1 6(1 a)≈ − −  
 
 You can probably figure out that for n processors the number of failure modes is 
n(n-1)/2. For the above example, n=4 and the number of failure modes is 4x3/2=6. 
 
Process/Processor Pairing 
 
 Figure 4 shows an alternate strategy for distributing process pairs. Processors are 
organized into pairs, and process pairs are constrained to run only in processor pairs. For 
a four-processor system, there are only two failure modes. Either the first pair of 

                                                 
3 This relation is an approximation since it does not account for failure modes involving more than two 
subsystems. Since the probability of three or more failures is extremely small, this relation is quite accurate. 
Besides, it’s a lot simpler than the fully accurate relation. 
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processors must fail or the second pair must fail in order to cause a system failure. Thus, 
the availability of this configuration is 
 
   ≈ − − 2A 1 2(1 a)  
 
This configuration has three times the reliability of the randomly distributed 
configuration. In general, for n subsystems, the number of failure modes is n/2 for this 
strategy. 
 
 In fact, the advantage of process/processor pairing gets better as the system gets 
larger. Consider an eight processor system (where f is the number of failure modes): 
 

 n a f A 
     
random 8 .995 28 .9993
paired 8 .995 4 .9999

 
 For an eight processor system, a paired configuration is seven times as reliable as 
a random configuration. For a sixteen processor system, reliability is improved by a 
factor of 15! 
 

Rule 3:  System reliability is inversely proportional to the number of failure 
modes. 

 
Rule 4:  Organize processors into pairs, and allocate each process pair only to a 
processor pair. 

 

 
Process Pairing 

Figure 4 
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Availability in General 
 
 We have seen above that failure probability is proportional to the number of 
failure modes. Thus, letting f be the number of failure modes, we may write 
 
   ≈ − − 2A 1 f(1 a)  
 
 This relationship assumes that each process is backed up by only one other 
process (we can consider the backup process as a spare which is put into service if the 
primary process fails). 
 
 But what if we have two spares? Then any given failure occurs only with a 
probability of (1-a)3. In general, if we have s spares, then the system will fail only if we 
have s+1 subsystem failures. Any particular failure of s+1 subsystems will occur with a 
probability of (1-a)s+1, and the system availability becomes 
 
   s 1A 1 F 1 f(1 a) += − ≈ − −     (7) 
 
 This is our general availability equation.4 Note that it reduces to our simple 
example represented by Equation (6) for f=1 and s=1.5 
 
 There is one assumption that is inherent in our discussion so far, and that is that 
the system is returned to service as soon as a failed subsystem has been repaired. It needs 
no further recovery. This assumption is explored further in Part 4. 
 
More Sparing 
 
 Note that from Equation 7, reliability increases exponentially with the number of 
spares. If a is .99, each additional level of sparing adds another two 9s to the system 
availability. Single sparing gives a system availability of four 9s, double sparing gives an 
availability of six 9s, and so on. 
 

Rule 5:  System availability increases dramatically with increased sparing. 
Whatever the availability of a subsystem is, each additional level of sparing adds 
that many 9s to the overall system availability. 

 
 How do we increase process sparing in NonStop systems? There are two cases: 
 

• For checkpointed process pairs, allow a process to start a new backup in a 
surviving processor if the process loses its backup due to a processor 

                                                 
4 As we said earlier, this is an approximation. However, not only is it conservative in that it gives a lower 
value for A than the actual value, but it is within 5% for the range of values in which we are interested. 
5 This result is an extension of an excellent summary of availability found in Chapter 8, “Reliability 
Calculations,”  Burt H. Liebowitz and John H. Carson,  “Multiple Processing Systems for Real-Time 
Applications,” Prentice-Hall;1985. 
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failure. 
 

• For persistent processes that are restarted in another processor by a 
monitor should the process fail because of a processor failure, give the 
monitor the choice of more than two processors in which to start the 
process (of course, the monitor must be redundant as well). 

 
How Many Failure Modes? 
 
 As we have discussed, the worst availability case is the random distribution of 
processes. For n subsystems and s spares, the number of failure modes for this case is the 
number of ways that s+1 subsystems can fail out of n systems.6 These maximum values 
for f are shown in Table 2. 

 
 We can see from this table that the maximum number of failure modes for a 
single-spared 16 processor system is 120. However, we know that if we pair processors 
and processes, we can reduce the number of failure modes to 8, a 15:1 reduction as we 
have earlier noted. 
 
         Processors (n)     
  2 4 6 8 10 12 14 16
Spares (s)         

0 2 4 6 8 10 12 14 16
1 1 6 15 28 45 66 91 120
2  4 20 56 120 220 364 560
3  1 15 70 210 495 1001 1820
4    6 56 252 792 2002 4368
5    1 28 210 924 3003 8008
6      8 120 792 3432 11440
7      1 45 495 3003 12870
8        10 220 2002 11440
9        1 66 1001 8008

10          12 364 4368
11          1 91 1820
12            14 560
13            1 120
14              16
15              1

 
Maximum Failure Modes (f) 

Table 2 
 
 

                                                 
6 For Math Nuts: This is n!/(n-s-1)!(s+1)! 
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 Since reliability is proportional to failure modes (Rule 3), we can lose more than a 
nine from our achievable availability for a 16 processor system if we are not careful with 
process allocation. More about this later. 
 
The Impact of Repair Time 
 
 So far we have talked about availability as the predominant measure of reliability. 
But as we indicated in the opening to this paper, the system mean time to repair, MTR, is 
often an equally important parameter. Let us look at system MTR and its relation to 
subsystem mean time to repair, mtr. 
 
 From Equation (1a), we can express subsystem availability a in terms of its mtbf 
and mtr: 
 

    mtbfa
mtbf mtr

=
+

 

where 
 a is the subsystem availability. 
 mtbf is the subsystem mean time before failure. 
 mtr is the subsystem mean time to repair. 
 
 Note that we are using upper case MTBF and MTR to represent the system, and 
lower case mtbf and mtr to represent the subsystem. 
 
 A little algebraic manipulation results in 
 

   − = − ≈
+

1 mtr1 a 1 mtr mtbf1
mtbf

    (8) 

 
 The approximation depends upon mtbf being much greater than mtr. This is 
certainly true by orders of magnitude in the systems that we are considering. 
 
 Substituting Equation (8) into Equation (7), we have 
 

   
s 1mtrA 1 F 1 f

mtbf

+
 = − ≈ −  
 

    (9) 

 
 We see that reliability is exponentially affected by subsystem mtr. For one spare 
(s = 1), the system failure probability will be cut by a factor of 4 if we can cut subsystem 
mtr in half. 
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 But how does subsystem mtr affect the overall system MTR and its MTBF? It can 
be shown7 that 

   mtrMTR
(s 1)

=
+

     (10) 

 
For one spare, system MTR is half the subsystem mtr. Thus, for one spare, if our 
subsystem mtr is four hours, then our system MTR is two hours.  
 

Rule 6: For a single spare system, the system MTR is one-half the subsystem mtr. 
 

 Furthermore, if we reduce mtr by a factor of k, we will reduce MTR by a factor of 
k. Since we have seen that the failure probability will be reduced by k2 (Equation (9)), 
then from Equation (2) we can conclude that we will increase our system MTBF by a 
factor of k. 
 

Rule 7: For the case of a single spare, cutting subsystem mtr by a factor of k will 
reduce system MTR by a factor of k and increase the system MTBF by a factor of 
k, thus increasing system reliability by a factor of k2. 

 
 For instance, let us say that our system has an MTBF of five years and an mtr of 4 
hours, leading to an MTR of two hours. If we can cut mtr in half to two hours, our system 
MTR will be reduced to one hour; and our system MTBF will be increased to ten years. 
Our reliability has increased by a factor of four as indicated above. 
 
Some Helpful Charts 
 
 Figure 4 shows availability as a function of the number of processors and the 
number of spares for random distribution of processes. Note that no matter the number of 
processors, each additional spare adds about two 9s to the system availability. 
 
 Figure 5 shows availability as a function of spares and failure modes. Let’s look 
at process pairing and random distribution for 16 processors. For process pairing (f=8), 
system availability is almost four 9s. For random distribution (f=120), system availability 
is about two and a half nines. My! That’s about the availability of a UNIX box. 

                                                 
7 Highleyman, W. H., “The Impact of Mean Time to Repair on System Availability,” ITI, Inc. white paper, 
August 19, 2002. 
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Availability as a Function of Processors and Spares 

Figure 5 
 

 
 

Availability as a Function of Spares, Failure Modes 
Figure 6 
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Answers 
 
 Let’s return to our initial provocative statements. 
 

• Adding processors to your NonStop system increases reliability. 
 
 Well, it all depends. If sparing remains the same, then the number of failure 
modes increases; and reliability decreases. However, if the extra processors are used to 
increase sparing, then reliability can dramatically increase. However, since we don’t 
generally change the design of the system when we add processors, this statement is 
typically false. Adding processors reduces reliability. 
 

• A 16-processor NonStop system has the reliability of a UNIX box. 
 
 Again, it all depends. If you are distributing processes randomly, then this is true. 
However, if you are intelligent in the way you distribute processes, your system 
reliability will beat that of a UNIX system by an order of magnitude or more. So 
hopefully, your answer to this is false. 
 

• A NonStop processor is less reliable than a UNIX processor. 
 
 The answer to this one is probably true, but so what? In order to build a truly 
fault-tolerant system, all components, both hardware and software, must be fail-fast so 
that corrupted data does not get propagated. To achieve this, NonStop processor boards 
use a pair of on-board lock-step processors which continually compare results. If there is 
a mismatch, the processor board shuts down immediately. Thus, the processor board can 
fail if either on-board processor fails, giving two failure modes instead of one for the 
UNIX processor. Given comparable component and manufacturing quality and 
comparable component count per processor, we would expect the NonStop processor 
board to fail twice as often as a UNIX processor. But this is a trivial price to pay for the 
ultimate fault tolerance provided. NonStop’s fault tolerant architecture beats non-fault 
tolerant architecture by two 9s or so (100 times more reliable). 
 
 Here’s a bonus question: 
 

• To double your capacity, should you upgrade your 4-processor S74K to an 8-
processor S74K or to a 4-processor S86K? (Assumes an S86K processor is twice 
as fast as an S74K processor, which is almost true). 

 
 A 4-processor S86K will not only be more reliable, but its response time also will 
be almost twice as fast. 
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Summary 
 
 We summarize the concepts presented above by considering how we might 
improve reliability. Our general availability relationships of Equations (1), (7), (9), and 
(10) state that8 
 

   MTBF MTRA 1
MTBF MTR MTBF

= ≈ −
+

   (1) 

 

   
s 1

s 1 mtrA 1 f(1 a) 1 f
mtbf

+
+  ≈ − − ≈ −  

 
   (7), (9) 

 

   mtrMTR
s 1

=
+

      (10) 

 
 From these equations, we can also determine that 
 

   
smtbf mtbfMTBF

f(s 1) mtr
 ≈  +  

    (11) 

 
 These expressions relate system availability A, system mean time to repair, MTR, 
and system mean time to failure, MTBF, to four parameters on which we can get our 
hands – f, s, mtbf, and mtr: 

                                                 
8 These equations are restatements of the Einhorn relationships. See Einhorn, S. J., “Reliability Prediction 
for Repairable Redundant Systems,” Proceedings of the IEEE; February, 1963. 
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mtbf Subsystem mean time to failure is out of our control. Not much we can 
do about that. 
 

mtr Reductions in subsystem repair time have an exponential impact on 
availability. In a one-spare system, cutting subsystem repair time in 
half provides a four-fold improvement in reliability. Cutting it by a 
factor of ten provides 100 times more reliability – two 9s on the 
availability scale. Consider a tighter service contract or, for larger 
users, on-site spares and on-site maintenance. 
 

s There’s not much that we as users can do to increase sparing of NSK 
critical processes. HP would have to decide that the significant 
software development effort to do this is worthwhile. Until they take 
this step, there is not much sense in critical applications processes 
being written with sparing in excess of one. 
 

f Ah! We can control the number of failure modes. As we’ve shown, 
intelligent distribution of critical processes can reduce failure rates 
significantly, picking up one or two nines if we work at it. 

 
How Far Should We Go? 
 
 From Figure 6, we see that we can achieve an availability of four 9s with our 
NonStop systems if we can keep the failure modes to five or less. Isn’t this enough? 
 
 The Standish Group9 has defined the following application categories and their 
required availability: 
 

      Class            9s 
 
 Non-critical    2 
 Task critical    3 
 Business critical   4 
 Mission critical   5 
 Safety critical    6 

 
Availability Requirements 

(The Standish Group) 
Table 3 

 
 So if you have a need that you would characterize as mission critical or safety 
critical, you’d better mind your 9s. 

                                                 
9 Standish Group; 2002. 
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A Case Study 
 
 Amtrak provided a real-life case study of these concepts with their real-time train 
control system for the busy Northeast corridor. Shown at a very high level in Figure 7, 
this system uses a NonStop system to monitor and control trains via a duplexed 
communication link to track-side devices (signals, switches, occupancy detectors). A 
redundant console system is used by the train dispatchers to monitor and direct train 
traffic. 
 
 

Amtrak Train Control System 
Figure 7 

 
 A detailed analysis of the system availability (whose results are shown in Figure 
7) predicted a system availability of .9995. Not bad! Unfortunately, the specifications for 
the system required an availability of .9998. The design had missed the reliability mark 
by a factor of 2.5. To make matters worse, this was a fixed price contract; and the system 
was not going to be accepted unless the availability requirement was met. 
 
 It was clear that the culprit was the 8-processor K-series system that had an 
availability of .99952 based on the worst case of 28 failure modes. However, a little 
algebra showed that if we reduced the failure modes to 12, we met the specification. 
Process allocation guidelines were put in place, and the system was accepted. By the 
way, it went into service in July, 1999, and hasn’t failed yet. 

processor
processor

processor
processor

processor
processor

processor
processor

Dispatcher
Consoles

A = .999984

Control System
n = 8, s = 1

a = .996
A = .99952

Comm Subsystem

A = .9999992

System Availability = .999984 x .99952 x  .9999992 = .99950
Failure Rate is .0005/.0002 = 2.5 times worse than required.
Solution: Reduce failure modes from 28 to 12 thrugh software configuration.

Required Availability = .9998

Field
Devices
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 This was an inexpensive fix to a potentially very expensive problem using the 
concepts discussed in this paper. 
 
What’s Next 
 
 Bear in mind that all we have really talked about so far are general availability 
concepts as applied to redundant hardware systems. The consideration of faults caused by 
software is a much more complex subject which is considered in Part 4 of this series of 
articles. 
 
 In Parts 2 and 3, we explore in more depth the availability considerations and 
advantages of replicating and splitting systems. In Part 4, we delve deeper into the impact 
of software and operational errors as well as environmental faults. In Part 5, we put all of 
this together to suggest a system architecture that can dramatically increase availability at 
little additional cost. 
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